Times the bottom equation by -4 to cancel out the x’s.
Add the equations.
Solve for y.
Plug in y to find x.
The critical values corresponding to a 0.01 significance level used to test the null hypothesis of ρs = 0 is (a) -0.881 and 0.881
<h3>How to determine the critical values corresponding to a 0.01 significance level?</h3>
The scatter plot of the election is added as an attachment
From the scatter plot, we have the following highlights
- Number of paired observations, n = 8
- Significance level = 0.01
Start by calculating the degrees of freedom (df) using
df =n - 2
Substitute the known values in the above equation
df = 8 - 2
Evaluate the difference
df = 6
Using the critical value table;
At a degree of freedom of 6 and significance level of 0.01, the critical value is
z = 0.834
From the list of given options, 0.834 is between -0.881 and 0.881
Hence, the critical values corresponding to a 0.01 significance level used to test the null hypothesis of ρs = 0 is (a) -0.881 and 0.881
Read more about null hypothesis at
brainly.com/question/14016208
#SPJ1
Answer:
Yes
Step-by-step explanation:greatest common factor (GCF) of 10 and 14 is 2. We will now calculate the prime factors of 10 and 14, then find the greatest common factor (greatest common divisor (gcd)) of the numbers by matching the biggest common factor of 10 and 14.
5x-1=19
1st you add the one over to the 19 and you'll get 20
then you do 5x=20
divide the 5x over to the 20 and your final answer is 4.