The third one
synthesis reactions have multiple reactants that synthesize into one product
Answer: To solve this question, we need to use the Avogadro's Number, which is a constant first discovered by Amadeo Avogadro, an Italian scientist. He discovered that in a mole of a substance, there are 6,02*10²³ molecules. Using this relationship, we apply the following conversion factor:
So, 8,50 * 10²⁴ molecules of Na₂SO₃ represent 14,12 moles of Na₂SO₃
Explanation:
Reactant are those that combine or reacts to give products !!
so in combustion of ethane ; ethane and o2 are reactants so ... your answer is B !!
Answer:
The maximum wavelength of light for which a carbon-hydrogen single bond could be broken by absorbing a single photon = 290 nm
Explanation:
So to break a single C - H bond require = 
= 6.84 x 10⁻¹⁹ joule
Find the wavelength of a photon we use E = hν
⇒ E = 
Where h = Planck's constant = 6.626 x 10⁻³⁴ J.K⁻¹.Mole⁻¹
c = speed of light = 3 x 10⁸ m/sec
Wavelength = 
= 2.9 x 10⁻⁷ m
= 290 nm
∵ 1 nm = 10⁻⁹ m
Answer:
The particles must be in the correct orientation upon impact.
The particles must collide with enough energy to meet the activation energy of the reaction.
Explanation:
This a problem related to chemical kinetics. The collision theory is one of the theories of reaction rates and it perfectly explains how the effectiveness of colliding molecules dictates the pace of a reaction.
For reactions to occur, there must be collisions between reacting particles. It implies that the collision per unit time and how successful collisions are determines the rate of chemical reactions in most cases. Therefore, for a collision to be successful, colliding particle must have enough energy which is greater than the activation energy of the reaction. In order to also produce the desired products, the colliding particles must be properly oriented.