Answer:
Forces acting on an object may be balanced or unbalanced. When the forces acting on an object have <u>equal</u> strength and act in opposite directions, they are <u>balanced</u>. These forces cancel out one another, and the <u>motion</u> of the object does not <u>change</u>. When the forces acting on an object are <u>unbalanced</u>, they do not cancel out one another. An unbalanced force acting on an object results in the object’s motion <u>changing</u>. The object may change its <u>speed</u> (speed up or slow
down), or it may change its <u>direction</u>. <u>Friction</u> is a force that resists the motion or the tendency toward motion between two objects in contact with each other. <u>Gravity</u> is a force that pulls objects toward one another. For example, Earth pulls all objects toward it.
Explanation:
When a solid forms with two solutions are mixed it is a precipitate
Answer:

Explanation:
» The prediction is 98% correct because single displacement reaction type is highly possible.
This is because Fluorine has is more electronegative than Chlorine in Potassium Chloride. So, it strongly displaces Chlorine from the solution hence forming Chlorine gas.
» The 2% of wrong prediction maybe because of wrong reactant measurements following mole concept chemistry.
If you are asked the observation,
Observation » <u> </u><u>A</u><u> </u><u>green</u><u> </u><u>yellowish</u><u> </u><u>gas</u><u> </u><u>is</u><u> </u><u>formed</u><u>.</u>
This gas is Chlorine gas (Cl2)
Answer:
B
Explanation:
B is the best showing of a chemical reaction out of the choices
500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.
Answer:
Option C.
Explanation:
As 500 g of baking soda is taken in each box of that company. The total weight of baking soda in all the boxes can be determined by adding the weights of each box. This is possible only when the number of boxes is less. But if the number of boxes are large, then we can determine the total weight of baking soda by multiplying the number of boxes with the weight in each box.
So in this case, 1000 boxes are present and in that 500 g of baking soda are present in each box.
So total grams of baking soda will be 1000 * 500 = 5,00,000 g.
Thus, 500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.