A) The probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
B) The probability the golfer got exactly two holes-in-one during a single game is 8.57%.
C) The probability the golfer got six holes-in-one during a single game is close to 0%.
<h2 /><h2><u>How to determine probabilities</u></h2>
Since a miniature golf player sinks a hole-in-one about 12% of the time on any given hole and is going to play 8 games at 18 holes each, to determine A) what is the probability the golfer got zero or one hole -in-one during a single game, B) what is the probability the golfer got exactly two holes-in-one during a single game, and C) what is the probability the golfer got six holes-in-one during a single game , the following calculations must be performed:
- 1 - 0.12 = 0.88
- 0.88 ^ 17 = 0.1138
- 0.88 ^ 18 = 0.1001
Therefore, the probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
- 0.88 ^ 18 - 0.12 ^ 2 = X
- 0.0857 = X
Therefore, the probability the golfer got exactly two holes-in-one during a single game is 8.57%.
- 0.12 ^ 6 x 0.88 ^ 12 = X
- 0.0000000001 = X
Therefore, the probability the golfer got six holes-in-one during a single game is close to 0%.
Learn more about probabilities in brainly.com/question/25273534
Answer:
48÷3=16
Step-by-step explanation:
In the expression, 96 divided by 8 = a , the quotient a =12
. Divide 12 lizards into 6 equal groups. How many lizards are in each group?
There are2
lizards in each group.
Answer:
Wz I think
Step-by-step explanation:
3x(8r-1) x (4r+2s)
3x7r x (4r+2s)
21r x (4r+2s)
The final answer is 1,200