I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
Answer:

Explanation:
To solve this problem, we can use the Combined Gas Laws:

Data:
p₁ = 1.7 kPa; V₁ = 7.5 m³; T₁ = -10 °C
p₂ = ?; V₂ = 3.8 m³; T₂ = 200 K
Calculations:
(a) Convert temperature to kelvins
T₁ = (-10 + 273.15) K = 263.15 K
(b) Calculate the pressure

Answer: The beginning stage you decide to depict the area, or position, of an object.
Explanation: starting point or position
Answer:
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²