Answer:
50.76 mol H2O.
Explanation:
The photosynthesis follows the equation:
6CO2 + 6H2O ---> C6H12O6 + 6O2
This means that 6 mol of H2O are needed to obtain 1 mol of C6H12O6 (see the numbers that precedes every molecule to know how many mols are in game).
So we can say that:
1 mol C6H12O6 --------- 6 mol H2O
8.46 mol C6H12O6 -----x= 8.46 x 6 : 1 = 50.76 mol H20
Answer:
Explanation:
That's correct. Once Aluminum becomes an ion, it is very hard to force it to take back its electrons. Only a few elements can do it. Iron is not one of them.
Answer: The pair that consists of a base and its conjugate acid in that order.
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.



is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it forms
which is a conjugate acid.
Answer:
The molarity is 0.56
Explanation:
In a mixture, the chemical present in the greatest amount is called a solvent, while the other components are called solutes. Then, the molarity or molar concentration is the number of moles of solute per liter of solution.
In other words, molarity is the number of moles of solute that are dissolved in a given volume.
The Molarity of a solution is determined by:

Molarity is expressed in units (
).
Then you must know the number of moles of Cu(NO₂)₂. For that it is necessary to know the molar mass. Being:
-
Cu: 63.54 g/mol
- N: 14 g/mol
- O: 16 g/mol
the molar mass of Cu(NO₂)₂ is:
Cu(NO₂)₂= 63.54 g/mol + 2*(14 g/mol + 2* 16 g/mol)= 155.54 g/mol
Now the following rule of three applies: if 155.54 g are in 1 mole of the compound, 225 g in how many moles are they?

moles= 1.45
So you know:
- number of moles of solute= 1.45 moles
- volume=2.59 L
Replacing in the definition of molarity:

Molarity= 0.56
<u><em>The molarity is 0.56</em></u>
<u><em></em></u>
Answer:
2.038 seconds.
Explanation:
So, in the question above we are given the following parameters in order to solve this question. We are given a rate constant of 0.500 s^-, initial concentration= 0.860 M and final concentration= 0.310 M,the time,t =??.
Assuming that the equation for the first order of reaction is given below,that is;
A ---------------------------------> products.
Recall the formula below;
B= B° e^-kt.
Therefore, e^-kt = B/B°.
-kt = ln B/B°.
kt= ln B°/B.
Where B° and B are the amount of the initial concentration and the amount of the concentration remaining, k is the rate constant and t = time taken for the concentration to decrease.
So, we have; time taken,t = ln( 0.860/.310)/0.500.
==> ln 2.77/0.500.
==> time taken,t =2.038 seconds.