Explanation:
The given data is as follows.


Now, according to Michaelis-Menten kinetics,
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
where, S = substrate concentration =
M
Now, putting the given values into the above formula as follows.
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
![V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%206.8%20%5Ctimes%2010%5E%7B-10%7D%20%5Cmu%20mol%2Fmin%20%5Ctimes%20%5B%5Cfrac%7B10.4%20%5Ctimes%2010%5E%7B-6%7D%20M%7D%7B%2810.4%20%5Ctimes%2010%5E%7B-6%7DM%20%2B%205.2%20%5Ctimes%2010%5E%7B-6%7D%20M%29%7D%5D)

= 
This means that
would approache
.
Complete question is;
Identify the type of reaction in the chemical reaction below:
2P205 ➡️ 4P + 502
single replacement
synthesis
decomposition
combustion
double replacement
Answer:
Decomposition
Explanation:
We. An see in the question that the compound 2P205 is broken down into simpler substances which are phosphorus (P) and oxygen (O).
Now, this is a decomposition reaction because a decomposition reaction is one in which a compound is broken down into simpler substances
Answer:
14.5 g silver
Explanation:
This is a problem using the stoichiometry of the reaction. First thing we need is the balanced equation:
Zn + 2 AgNO3 ----------------------- 2 Ag + Zn(NO3)2
We know that 14.6 g of Zn did not reacted, then we can calculate the amount of Zn reacted and do the calculation given the above reaction.
amount Zn reacted: 19.0 -14.6 g Zn = 4.4 g Zn
atomic weight of Zn: 65.37 g/mol
mol Zn reacted: 4.4 g Zn x ( 1 mol Zn/ 65.37 g Zn) = 0.067 mol Zn
We know from the balanced equation that moles of Ag are produced from 1 mol Zn therefore the mol of Ag produced are:
0.067 mol Zn x 2 mol Ag/ 1mol Zn = 0.135 mol Ag
and the mass of silver then will be given by multiplying by the atomic weight of silver:
0.135 mol Ag x 107.9 g/mol = 14.5 g Ag
The answer is B) the solutions vapor pressure will be lower.