solution:
E\delta =\frac{R}{\epsilon0}(1-\frac{A}{\sqrt{4R^{2}}-ac}
=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4r^{2}/^{_a{2}}+1}})
=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4x^2+1}})
x=\frac{r}{a}
infinite case,
Ei=\frac{r}{\epsilon0}
\therefore e\delta =ei(1-\frac{1}{\sqrt{4x^{2}+1}})
we have to find x when,
ei-e\delta =1% ,y=ei=1/100 ei
or,ei-ei+\frac{ei}{\sqrt{4x^2+1}} = 1/100ei
\frac{1}{\sqrt{4x^2+1}}=\frac{1}{100}
4x^2+1 =10^4
x=\frac{\sqrt{\frac{10^4-1}{4}}}=49.99\approx 50
\therefore \frac{r}{a}\approx 50
The displacement, time, and direction
Answer:
Thrust is the force acting normally to a surface. So, Thrust = 1200 N. And , Pressure = Thrust / Area. = 1200 / 0.001. = ...
Explanation:
this right like me
Answer:
7557120 kg/hour
Explanation:
Given data;
Volume of air in one second = 1640 L
Density of air = 1.28 kg/L
Mass of air in 1 hour =?
Since mass = density × volume
==> Mass of air in one second = 1.28 ×1640 = 2099.2 kg
==> Mass of air in one minute = 2099.2×60=125952 kg
==> Mass of air in one hour = 125952× 60 = 7557120 kg
So rate of flow of air is 7557120 kg/hour