To perform an experiment to determine the force constant of a spring, you will need a stand with a boss and clamp, a spiral spring, a meter rule and different weights.
The setup is arranged as shown in the image attached. The natural length of the spring is first recorded. Different weights are added to the spring one after the other and the extension is recorded.
The weight is now plotted on the vertical axis and the extension is plotted on the horizontal axis. The slope of the graph is the force constant of the spring.
Learn more: brainly.com/question/10991960
Answer:
the velocity of the kid is 5.6 m/s
Explanation:
r is the radius and w is the frequency.
so we should know that the diameter is 18m and the diameter is equal to two times the radius, so r = 18m/2 = 9m
we should also know that the circumference of a circle is equal to c = 2pi*r, so each revolution has this length. if the kid does 5.9 revolutions in one minute then the kid spins at v = 5.9*2pi*9m/min
so we want to write this in meters per second and this means that we need to divide it by 60!
v = (5.9*2pi*9/60)m/s = 5.56 m/s
so your answer will be 5.6 m/s glad i could help!
Answer:
Inverted (displaced downwards)
Explanation:
The pulse becomes INVERTED upon reflecting off the boundary with the wall. That is, an upward-displaced pulse will reflect off the end and return with a downward displacement. This inversion behavior will always be observed when the end of the medium is fixed, like this wall in this instance. This INVERSION BEHAVIOR can also be observed when the medium is connected to another more heavy or more dense medium. And in this case, when the pulse reaches the end of the medium, a portion of the pulse will reflect off the end and return with an inverted displacement. The heavier medium acts like a fixed end to cause the pulse to be inverted.
Summary: a pulse reaching the end of a medium becomes inverted whenever it either:
i. reflects off a fixed end,
ii. is moving in a less dense medium and reflects off a more dense medium.
Answer: The equilibrium constant can help us understand whether the reaction tends to have a higher concentration of products or reactants at equilibrium. We can also use K c K_\text c KcK, start subscript, start text, c, end text, end subscript to determine if the reaction is already at equilibrium.
Explanation: