The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
Answer:
A=1
B=-2
Explanation:
Part A and B of the question wasn't given, however, I attached the relevant parts to solve this question as follows.
From part B as attached, it shows that the right option is C which is
2A+3B=-4
Substituting B with 3A-5 then we form the second equation as shown
2A+3(3A-5)=-4
By simplifying the above equation, we obtain
2A+9A-15=-4
Re-arranging, then
11A=-4+15
Finally
11A=11
A=1
To obtain B, we already know that 3A-5 so substituting the value of A into the above then we obtain
B=3(1)-5=-2
Therefore, required values are 1 and -2
The answer is D-Testable
Hope this helps
Answer:
“Insanity is relative. It depends on who has who locked in what cage.” R.D. Laing: “Insanity – a perfectly rational adjustment to an insane world.” Nora Ephron: “Insane people are always sure that they are fine. It is only the sane people who are willing to admit that they are crazy.”Sep 20, 2012
Explanation:
Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m