Watt = voltage x ampere
750 = 220 x ampere
Ampere = 750 / 220
Resistance = voltage / ampere
= 220^2 / 750
Answer:
La deformación unitaria lineal experimentada por la barra es
.
Explanation:
De la Mecánica de Materiales sabemos que la deformación unitaria lineal es la razón de la variación de la longitud con respecto a su longitud inicial. Al asumirse que la variación longitudinal es muy pequeña con respecto a la longitud inicial, se puede utilizar la siguiente ecuación:
(Eq. 1)
Donde:
- Deformación unitaria, adimensional.
- Cambio longitudinal, medido en metros.
- Longitud inicial, medida en metros.
Si conocemos que
y
, entonces la deformación unitaria lineal es:


La deformación unitaria lineal experimentada por la barra es
.
1. Archaeological Dating. Carbon-14 is often used to find the age of a substance many years old.
2. In the use of x-rays and cat scans. X-Ray technicians often inject radioactive iodine in ones system to increase the contrast between soft tissue and bone on an x-ray image.
3. Smoke detectors: Americium is often used in smoke detectors because it is very sensitive to burning carbon dioxide.
Answer:
area is 7.22×10^-5 m^2
Explanation:
let B be the magnetic field strength, A be the area of the skip the pool.
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec