Based on the percentage that passed English and those who passed Mathematics and those who failed and passed both, the total number of students who appeared in the examination are 60 students.
The number of students who passed only in Math are 12 students.
<h3>What number of students sat in the exam?</h3>
This can be found as:
= Total who passed English only + Total who passed Math only + Total who failed both + Total who passed both
Assuming the total is n, the equation becomes:
n = 0.75n - 21 + 0.55n - 21 + 21 + 0.05n
n = 1.35n - 21
21 = 0.35n
n = 21 / 0.35
= 60 students
The number who passed mathematics only is:
= (60 x 55%) - students who passed both
= 33 - 21
= 12 students
Find out more on Venn diagrams at brainly.com/question/24581814
#SPJ1
It’s D
the x in f(x) is the x axis
look at 3 in the x axis
you see that it goes up to 8 y-axis
f(3)= 8
Answer:
See below ~
Step-by-step explanation:
<u>Given</u>
- Maitri and Aabhas do a work in 12 hours
- Aabhas and Kavya do the work in 15 hours
- Kavya and Maitri do the work in 20 hours
<u>Solving</u>
- Take Maitri, Aabhas, and Kavya to be x, y, z respectively
- <u>x + y = 12</u> (1)
- <u>y + z = 15</u> (2)
- <u>x + z = 20</u> (3)
<u>Take Equation 1 and rewrite it so that it is equal to x.</u>
<u>Take Equation 2 and rewrite it so that it is equal to z.</u>
<u>Now, substitute these values in Equation 3.</u>
- x + z = 20
- 12 - y + 15 - y = 20
- -2y + 27 = 20
- 2y = 7
- y = 7/2 = <u>3.5 hours [Aabhas]</u>
<u></u>
<u>Substitute the value of y in Equation 1.</u>
- x + 3.5 = 12
- x = <u>8.5 hours [Maitri]</u>
<u>Substitute the value of y in Equation 2.</u>
- 3.5 + z = 15
- z = <u>11.5 hours [Kavya]</u>
<u></u>
<u>Add the values of x, y, and z together.</u>
- x + y + z
- 8.5 + 3.5 + 11.5
- 12 + 11.5
- <u>23.5 hours [together]</u>
Answer:
first one is 0.02 the second is 8
Step-by-step explanation: