The width of the cooling tower at the base of the structure will be A. 36 meters.
<h3>How to calculate the width?</h3>
From the information given, the towers walls are modeled by x²/324 - (y² - 90)²/1600.
Therefore, the width of the cooling tower at the base of the structure will be:
= 2 × ✓324
= 2 × 18
= 36
In conclusion, the width is 36 meters.
Learn more about width on:
brainly.com/question/25855344
#SPJ1
Answer:
x = -10
y = -13
Step-by-step explanation:
-6(y + 3) + 4y = 8
-6y - 18 + 4y = 8
-2y - 18 = 8
+ 18 + 18
-2y (÷ -2) = 26 (÷ -2)
y = -13
x = -13 + 3
x = -10
Answer:
Therefore the value of y(1)= 0.9152.
Step-by-step explanation:
According to the Euler's method
y(x+h)≈ y(x) + hy'(x) ....(1)
Given that y(0) =3 and step size (h) = 0.2.

Putting the value of y'(x) in equation (1)

Substituting x =0 and h= 0.2
![y(0+0.2)\approx y(0)+0.2[0\times y(0)-\frac12 (y(0))^2]](https://tex.z-dn.net/?f=y%280%2B0.2%29%5Capprox%20y%280%29%2B0.2%5B0%5Ctimes%20y%280%29-%5Cfrac12%20%28y%280%29%29%5E2%5D)
[∵ y(0) =3 ]

Substituting x =0.2 and h= 0.2
![y(0.2+0.2)\approx y(0.2)+0.2[(0.2)^2\times y(0.2)-\frac12 (y(0.2))^2]](https://tex.z-dn.net/?f=y%280.2%2B0.2%29%5Capprox%20y%280.2%29%2B0.2%5B%280.2%29%5E2%5Ctimes%20y%280.2%29-%5Cfrac12%20%28y%280.2%29%29%5E2%5D)
![\Rightarrow y(0.4)\approx 2.7+0.2[(0.2)^2\times 2.7- \frac12(2.7)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.4%29%5Capprox%20%202.7%2B0.2%5B%280.2%29%5E2%5Ctimes%202.7-%20%5Cfrac12%282.7%29%5E2%5D)

Substituting x =0.4 and h= 0.2
![y(0.4+0.2)\approx y(0.4)+0.2[(0.4)^2\times y(0.4)-\frac12 (y(0.4))^2]](https://tex.z-dn.net/?f=y%280.4%2B0.2%29%5Capprox%20y%280.4%29%2B0.2%5B%280.4%29%5E2%5Ctimes%20y%280.4%29-%5Cfrac12%20%28y%280.4%29%29%5E2%5D)
![\Rightarrow y(0.6)\approx 1.9926+0.2[(0.4)^2\times 1.9926- \frac12(1.9926)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%20%201.9926%2B0.2%5B%280.4%29%5E2%5Ctimes%201.9926-%20%5Cfrac12%281.9926%29%5E2%5D)

Substituting x =0.6 and h= 0.2
![y(0.6+0.2)\approx y(0.6)+0.2[(0.6)^2\times y(0.6)-\frac12 (y(0.6))^2]](https://tex.z-dn.net/?f=y%280.6%2B0.2%29%5Capprox%20y%280.6%29%2B0.2%5B%280.6%29%5E2%5Ctimes%20y%280.6%29-%5Cfrac12%20%28y%280.6%29%29%5E2%5D)
![\Rightarrow y(0.8)\approx 1.6593+0.2[(0.6)^2\times 1.6593- \frac12(1.6593)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.8%29%5Capprox%20%201.6593%2B0.2%5B%280.6%29%5E2%5Ctimes%201.6593-%20%5Cfrac12%281.6593%29%5E2%5D)

Substituting x =0.8 and h= 0.2
![y(0.8+0.2)\approx y(0.8)+0.2[(0.8)^2\times y(0.8)-\frac12 (y(0.8))^2]](https://tex.z-dn.net/?f=y%280.8%2B0.2%29%5Capprox%20y%280.8%29%2B0.2%5B%280.8%29%5E2%5Ctimes%20y%280.8%29-%5Cfrac12%20%28y%280.8%29%29%5E2%5D)
![\Rightarrow y(1.0)\approx 0.8800+0.2[(0.8)^2\times 0.8800- \frac12(0.8800)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%281.0%29%5Capprox%20%200.8800%2B0.2%5B%280.8%29%5E2%5Ctimes%200.8800-%20%5Cfrac12%280.8800%29%5E2%5D)

Therefore the value of y(1)= 0.9152.
Answer:
The smallest solution is -6
Step-by-step explanation:
2/3 x^2 = 24
Multiply each side by 3/2
3/2 *2/3 x^2 = 24*3/2
x^2 = 36
Take the square root of each side
sqrt(x^2) = sqrt(36)
x = ±6
The smallest solution is -6
The largest solution is 6