Answer:
Rate of change in elevation = 0.6 in/year
Step-by-step explanation:
Note:
Current elevation (Missing) = 7,602 feet
Given:
Old elevation = 7,602 feet
Number of year = 7,600
Find:
Rate of change in elevation
Computation:
Change in elevation = 7,602 - 7,600
Change in elevation = 2 ft
Change in elevation = 2 x 12 = 24 inches
Rate of change in elevation = 24 / 40
Rate of change in elevation = 0.6 in/year
BC is the answer love... have fun on that I-Ready Diagnostic
Answer:
257.5 ft
Step-by-step explanation:
circumference of a circle with diameter=
pi*d
3.14*82=257.48
Hope this helps!
Step-by-step explanation:
In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2