Answer:
We are effectively looking for a and b such that 5, a, b, 135 is a geometric sequence.
This sequence has common ratio <span><span>3<span>√<span>1355</span></span></span>=3</span>, hence <span>a=15</span> and <span>b=45</span>
Explanation:
In a geometric sequence, each intermediate term is the geometric mean of the term before it and the term after it.
So we want to find a and b such that 5, a, b, 135 is a geometric sequence.
If the common ratio is r then:
<span><span>a=5r</span><span>b=ar=5<span>r2</span></span><span>135=br=5<span>r3</span></span></span>
Hence <span><span>r3</span>=<span>1355</span>=27</span>, so <span>r=<span>3<span>√27</span></span>=3</span>
Then <span>a=5r=15</span> and <span>b=ar=15⋅3=45</span>
The circumference of a circle is calculated through the equation,
C = 2πr
where C is circumference and r is radius. For this item, I assume that 12 in is the radius such that,
C = 2π(12 in) = 24π
Thus, the circumference of the circle is 24π inches.
Answer:
The answer is "MS and QS".
Step-by-step explanation:
Given ΔMNQ is isosceles with base MQ, and NR and MQ bisect each other at S. we have to prove that ΔMNS ≅ ΔQNS.
As NR and MQ bisect each other at S
⇒ segments MS and SQ are therefore congruent by the definition of bisector i.e MS=SQ
In ΔMNS and ΔQNS
MN=QN (∵ MNQ is isosceles triangle)
∠NMS=∠NQS (∵ MNQ is isosceles triangle)
MS=SQ (Given)
By SAS rule, ΔMNS ≅ ΔQNS.
Hence, segments MS and SQ are therefore congruent by the definition of bisector.
The correct option is MS and QS
Answer: 0
Step-by-step explanation:
The line runs through the coordinate (0,0), rather than starting at (0,2), (0,4), or (0,8).
Always remember that you read coordinates as (x,y) which..
X is how many spaces right or left
Y is how many spaces up or down.