<u>Given</u>:
Line m is parallel to line n.
The measure of ∠1 is (4x + 15)°
The measure of ∠2 is (9x + 35)°
We need to determine the measure of ∠1
<u>Value of x:</u>
From the figure, it is obvious that ∠1 and ∠2 are linear pairs.
Thus, we have;

Substituting the measures of ∠1 and ∠2, we get;




Thus, the value of x is 10.
<u>Measure of ∠1:</u>
The measure of ∠1 can be determined by substituting x = 10 in the measure of ∠1
Thus, we have;



Thus, the measure of ∠1 is 55°
Dododkdldlldlflffosjdididkdkdkdkd
The equation of a hyperbola is:
(x – h)^2 / a^2 - (y – k)^2 / b^2 = 1
So what we have to do is to look for the values of the variables:
<span>For the given hyperbola : center (h, k) = (0, 0)
a = 3(distance from center to vertices)
a^2 = 9</span>
<span>
c = 7 (distance from center to vertices; given from the foci)
c^2 = 49</span>
<span>By the hypotenuse formula:
c^2 = a^2 + b^2
b^2 = c^2 - a^2 </span>
<span>b^2 = 49 – 9</span>
<span>b^2 = 40
</span>
Therefore the equation of the hyperbola is:
<span>(x^2 / 9) – (y^2 / 40) = 1</span>
A = bh
60 in.² = b(4)
60/4 = b
b = 15 inches
Hope this helped!
The answer is 27 loaves. please do not open the link on the other answer! it’s a scam