Answer:
B, the one with the line and shaded the top on the right side. (The one that goes to 7 on the x axis).
Step-by-step explanation:
First I find which graph as y -intercept of -3, which is all of them.
Next, I find with graph has a slope of 1/3. (rise 1 run 3). Only B and D has a slope of 1/3 (The ones that has a less steep graph. )
Then, I use the coordinate (0,0) to see which side the graph shades. I plug it into the inequality. (0)≥1/3(0)-3. Solve. Is 0 greater than -3. YES! so we shade the part where (0,0) is shaded which is B.
There are
ways of picking 2 of the 10 available positions for a 0. 8 positions remain.
There are
ways of picking 3 of the 8 available positions for a 1. 5 positions remain, but we're filling all of them with 2s, and there's
way of doing that.
So we have

The last expression has a more compact form in terms of the so-called multinomial coefficient,

Answer:
The equation of the quadratic graph is f(x)= - (1/8) (x-3)^2 + 3 (second option)
Step-by-step explanation:
Focus: F=(3,1)=(xf, yf)→xf=3, yf=1
Directrix: y=5 (horizontal line), then the axis of the parabola is vertical, and the equation has the form:
f(x)=[1 / (4p)] (x-h)^2+k
where Vertex: V=(h,k)
The directix y=5 must intercept the axis of the parabola at the point (3,5), and the vertex is the midpoint between this point and the focus:
Vertex is the midpoint between (3,5) and (3,1):
h=(3+3)/2→h=6/2→h=3
k=(5+1)/2→k=6/2→k=3
Vertex: V=(h,k)→V=(3,3)
p=yf-k→p=1-3→p=-2
Replacing the values in the equation:
f(x)= [ 1 / (4(-2)) ] (x-3)^2 + 3
f(x)=[ 1 / (-8) ] (x-3)^2 + 3
f(x)= - (1/8) (x-3)^2 + 3