first off, let's convert the mixed fraction to improper fraction and then proceed, let's notice that by PEMDAS or order of operations, the multiplication is done first, and then any sums.
![\stackrel{mixed}{1\frac{7}{8}}\implies \cfrac{1\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{15}{8}} \\\\[-0.35em] ~\dotfill\\\\ -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \div \cfrac{1}{2}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \cdot \cfrac{2}{1}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{4} \\\\\\ \cfrac{-3+15}{4}\implies \cfrac{12}{4}\implies 3](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Cdiv%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Ccdot%20%5Ccfrac%7B2%7D%7B1%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B-3%2B15%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B4%7D%5Cimplies%203)
Answer: The required characteristic polynomial of the given matrix A is 
Step-by-step explanation: We are given to find the characteristic polynomial of the following 3 × 3 matrix A with unknown variable x :
![A=\left[\begin{array}{ccc}0&0&1\\4&-3&4\\-2&0&-3\end{array}\right].](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C4%26-3%264%5C%5C-2%260%26-3%5Cend%7Barray%7D%5Cright%5D.)
We know that
for any square matrix M, the characteristic polynomial is given by
where I is an identity matrix of same order as M.
Therefore, the characteristic polynomial of matrix A is
![|A-xI|=0\\\\\\\Rightarrow \left|\left[\begin{array}{ccc}0&0&1\\4&-3&4\\-2&0&-3\end{array}\right]-x\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\right|=0\\\\\\\Rightarrow \left|\left[\begin{array}{ccc}-x&0&1\\4&-3-x&4\\-2&0&-3-x\end{array}\right] \right|=0\\\\\\\Rightarrow -x(3+x)^2+1(0-6-2x)=0\\\\\Rightarrow (x+3)(-3x-x^2-2)=0\\\\\Rightarrow (x+3)(x^2+3x+2)=0\\\\\Rightarrow x^3+6x+11x+6=0.](https://tex.z-dn.net/?f=%7CA-xI%7C%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cleft%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%261%5C%5C4%26-3%264%5C%5C-2%260%26-3%5Cend%7Barray%7D%5Cright%5D-x%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%5Cright%7C%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cleft%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-x%260%261%5C%5C4%26-3-x%264%5C%5C-2%260%26-3-x%5Cend%7Barray%7D%5Cright%5D%20%5Cright%7C%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20-x%283%2Bx%29%5E2%2B1%280-6-2x%29%3D0%5C%5C%5C%5C%5CRightarrow%20%20%28x%2B3%29%28-3x-x%5E2-2%29%3D0%5C%5C%5C%5C%5CRightarrow%20%28x%2B3%29%28x%5E2%2B3x%2B2%29%3D0%5C%5C%5C%5C%5CRightarrow%20x%5E3%2B6x%2B11x%2B6%3D0.)
Thus, the required characteristic polynomial of the given matrix A is 
Answer:
You have to go on a cite called Math and Way buth without the and and no space between math and way
Step-by-step explanation:
It is 28 i think been 3 year since i did this