A) The answers are:
the first frequency - 428.75 Hz
the second frequency - 1286.25 Hz
the third frequency - 2143.75 Hz
The frequency (when the pipe is closed) is: f = v(2n - 1)/4L
v - the speed of sound
n - the frequency order
L - the length of the organ pipe
We know:
v = 343 m/s
L = 20 cm = 0.2 m
1. The first frequency (n = 1):
f = 343 * (2 * 1 - 1) / 4 * 0.2 = 343 * 1 / 0.8 = 428.75 Hz
2. The second frequency (n = 2):
f = 343 * (2 * 2 - 1) / 4 * 0.2 = 343 * 3 / 0.8 = 1286.25 Hz
3. The third frequency (n = 3):
f = 343 * (2 * 3 - 1) / 4 * 0.2 = 343 * 5 / 0.8 = 2143.75 Hz
B) The answers are:
the first frequency - 857.5 Hz
the second frequency - 1715 Hz
the third frequency - 2572.5 Hz
The frequency (when the pipe is open) is: f = vn/2L
v - the speed of sound
n - the frequency order
L - the length of the organ pipe
We know:
v = 343 m/s
L = 20 cm = 0.2 m
1. The first frequency (n = 1):
f = 343 * 1 / 2 * 0.2 = 343 / 0.4 = 857.5 Hz
2. The second frequency (n = 2):
f = 343 * 2 / 2 * 0.2 = 686 / 0.4 = 1715 Hz
3. The third frequency (n = 3):
f = 343 * 3 / 2 * 0.2 = 1029 / 0.4 = 2572.5 Hz
Answer:
-5/12
Step-by-step explanation:
Let's solve your equation step-by-step.
1
/3 = n + 3
/4
Step 1: Flip the equation.
n + 3
/4 = 1/
3
Step 2: Subtract 3/4 from both sides.
n+ 3
/4 − 3/4 = 1/
3 − 3
/4
n= −5
/12
Answer:
1.) B (Real Numbers)
2.) A
Step-by-step explanation:
Answer:
49
Step-by-step explanation: