1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
2 years ago
12

Y + 4 = 4/3 * 2 What is y?

Mathematics
2 answers:
salantis [7]2 years ago
6 0

Answer:

y=2x-2.... I think

Step-by-step explanation:

galben [10]2 years ago
3 0

Answer:

i think it is x-2 if im not mistaking

Step-by-step explanation:

You might be interested in
In parallelogram ABCD, AB= x, BC= x+y, CD= y-x and AD= 15. solve for x and y
erma4kov [3.2K]

Answer:

I think 29

I don't know if it's right

7 0
3 years ago
(-1/2 + 5/2) + a =0 solve for a
just olya [345]

Answer:

a = -2

i hope this helps

3 0
3 years ago
Read 2 more answers
The value of 7 in 17.92 is times as much value of 7 in 92.17
koban [17]
100
.. . . . . . . . .
3 0
3 years ago
Express the following quentitis as ratio 10k to 50k<br>​
alexandr402 [8]

Answer:

watch me whipzdudbbd iv ex

3 0
2 years ago
The length of time that an auditor spends reviewing an invoice is approximately normally distributed with a mean of 600 seconds
Bumek [7]
Answer: 11.5% 

Explanation:


Since 1 minute = 60 seconds, we multiply 12 minutes by 60 so that 12 minutes = 720 seconds. Thus, we're looking for a probability that the auditor will spend more than 720 seconds. 

Now, we get the z-score for 720 seconds by the following formula:

\text{z-score} =  \frac{x - \mu}{\sigma}

where 

t = \text{time for the auditor to finish his work } = 720 \text{ seconds}&#10;\\ \mu = \text{average time for the auditor to finish his work } = 600 \text{ seconds}&#10;\\ \sigma = \text{standard deviation } = 100 \text{ seconds}

So, the z-score of 720 seconds is given by:

\text{z-score} = \frac{x - \mu}{\sigma}&#10;\\&#10;\\ \text{z-score} = \frac{720 - 600}{100}&#10;\\&#10;\\ \boxed{\text{z-score} = 1.2}

Let

t = time for the auditor to finish his work
z = z-score of time t

Since the time is normally distributed, the probability for t > 720 is the same as the probability for z > 1.2. In terms of equation:

P(t \ \textgreater \  720) &#10;\\ = P(z \ \textgreater \  1.2)&#10;\\ = 1 - P(z \leq 1.2)&#10;\\ = 1 - 0.885&#10;\\  \boxed{P(t \ \textgreater \  720)  = 0.115}

Hence, there is 11.5% chance that the auditor will spend more than 12 minutes in an invoice. 
8 0
3 years ago
Other questions:
  • Help me with this please!!
    6·1 answer
  • Write three different improper fractions that equal 4 1/2
    9·2 answers
  • X&gt;3 on a number line​
    11·2 answers
  • (13x + 2x³ - 6 - x²)÷(x-3)​
    14·1 answer
  • On the graph of the equation 8x – 3y = 24, what is the value of the y-intercept?
    7·1 answer
  • Calculus help needed!
    14·1 answer
  • Write 1 3/4 as a decimal number.
    13·1 answer
  • Expand and combine like terms.<br><br> (4b^2+3)(4b^2-3)
    10·2 answers
  • Which steps could be used to solve this equation?
    6·1 answer
  • Kindly solve this please!<br>Diagram for both the questions are given.​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!