I don’t know how to find unit rate I don’t even know what it means
![T_n = a_1 + d(n-1)](https://tex.z-dn.net/?f=T_n%20%3D%20a_1%20%2B%20d%28n-1%29)
If a = 4 and d = 3,
![T_n = 4+ 3(n-1)](https://tex.z-dn.net/?f=T_n%20%3D%204%2B%203%28n-1%29)
![T_n = 4+ 3n-3](https://tex.z-dn.net/?f=T_n%20%3D%204%2B%203n-3)
![T_n = 3n + 1](https://tex.z-dn.net/?f=T_n%20%3D%203n%20%2B%201)
---------------------------------------------------------------------------------------
Answer: The general equation for the nth term is 3n + 1.---------------------------------------------------------------------------------------
Answer:
![\mathbf{\iiint_E E \sqrt{x^2+y^2} \ dV =\dfrac{81 \ \pi}{80}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%5Cdfrac%7B81%20%5C%20%20%5Cpi%7D%7B80%7D%7D)
Step-by-step explanation:
The Cylindrical coordinates are:
x = rcosθ, y = rsinθ and z = z
From the question, on the xy-plane;
![9 -16 (x^2 + y^2) = 0 \\ \\ 16 (x^2 + y^2) = 9 \\ \\ x^2+y^2 = \dfrac{9}{16}](https://tex.z-dn.net/?f=9%20-16%20%28x%5E2%20%2B%20y%5E2%29%20%3D%200%20%5C%5C%20%5C%5C%20%2016%20%28x%5E2%20%2B%20y%5E2%29%20%20%3D%209%20%5C%5C%20%5C%5C%20%20x%5E2%2By%5E2%20%3D%20%5Cdfrac%7B9%7D%7B16%7D)
![x^2+y^2 = (\dfrac{3}{4})^2](https://tex.z-dn.net/?f=x%5E2%2By%5E2%20%3D%20%28%5Cdfrac%7B3%7D%7B4%7D%29%5E2)
where:
0 ≤ r ≤
and 0 ≤ θ ≤ 2π
∴
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} \int ^{9-16r^2}_{0} \ r \times rdzdrd \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%5Cint%20%5E%7B%5Cdfrac%7B3%7D%7B4%7D%7D_%7B0%7D%20%5Cint%20%5E%7B9-16r%5E2%7D_%7B0%7D%20%5C%20r%20%5Ctimes%20rdzdrd%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} r^2 z|^{z= 9-16r^2}_{z=0} \ \ \ drd \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%5Cint%20%5E%7B%5Cdfrac%7B3%7D%7B4%7D%7D_%7B0%7D%20r%5E2%20z%7C%5E%7Bz%3D%209-16r%5E2%7D_%7Bz%3D0%7D%20%20%5C%20%5C%20%5C%20drd%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} r^2 ( 9-16r^2}) \ drd \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%5Cint%20%5E%7B%5Cdfrac%7B3%7D%7B4%7D%7D_%7B0%7D%20r%5E2%20%28%209-16r%5E2%7D%29%20%20%5C%20drd%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} ( 9r^2-16r^4}) \ drd \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%5Cint%20%5E%7B%5Cdfrac%7B3%7D%7B4%7D%7D_%7B0%7D%20%20%28%209r%5E2-16r%5E4%7D%29%20%20%5C%20drd%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} ( \dfrac{9r^3}{3}-\dfrac{16r^5}{5}})|^{\dfrac{3}{4}}_{0} \ drd \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%20%20%28%20%5Cdfrac%7B9r%5E3%7D%7B3%7D-%5Cdfrac%7B16r%5E5%7D%7B5%7D%7D%29%7C%5E%7B%5Cdfrac%7B3%7D%7B4%7D%7D_%7B0%7D%20%20%5C%20drd%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} ( 3r^3}-\dfrac{16r^5}{5}})|^{\dfrac{3}{4}}_{0} \ drd \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%20%20%28%203r%5E3%7D-%5Cdfrac%7B16r%5E5%7D%7B5%7D%7D%29%7C%5E%7B%5Cdfrac%7B3%7D%7B4%7D%7D_%7B0%7D%20%20%5C%20drd%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} ( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}}) d \theta](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%20%5Cint%5E%7B2%20%5Cpi%7D_%7B0%7D%20%20%20%28%203%28%5Cdfrac%7B3%7D%7B4%7D%29%5E3%7D-%5Cdfrac%7B16%28%5Cdfrac%7B3%7D%7B4%7D%29%5E5%7D%7B5%7D%7D%29%20d%20%5Ctheta)
![\iiint_E E \sqrt{x^2+y^2} \ dV =( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}}) \theta |^{2 \pi}_{0}](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%28%203%28%5Cdfrac%7B3%7D%7B4%7D%29%5E3%7D-%5Cdfrac%7B16%28%5Cdfrac%7B3%7D%7B4%7D%29%5E5%7D%7B5%7D%7D%29%20%5Ctheta%20%7C%5E%7B2%20%5Cpi%7D_%7B0%7D)
![\iiint_E E \sqrt{x^2+y^2} \ dV =( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}})2 \pi](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%28%203%28%5Cdfrac%7B3%7D%7B4%7D%29%5E3%7D-%5Cdfrac%7B16%28%5Cdfrac%7B3%7D%7B4%7D%29%5E5%7D%7B5%7D%7D%292%20%5Cpi)
![\iiint_E E \sqrt{x^2+y^2} \ dV =(\dfrac{81}{64}}-\dfrac{243}{320}})2 \pi](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%28%5Cdfrac%7B81%7D%7B64%7D%7D-%5Cdfrac%7B243%7D%7B320%7D%7D%292%20%5Cpi)
![\iiint_E E \sqrt{x^2+y^2} \ dV =(\dfrac{81}{160}})2 \pi](https://tex.z-dn.net/?f=%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%28%5Cdfrac%7B81%7D%7B160%7D%7D%292%20%5Cpi)
![\mathbf{\iiint_E E \sqrt{x^2+y^2} \ dV =\dfrac{81 \ \pi}{80}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ciiint_E%20%20E%20%5Csqrt%7Bx%5E2%2By%5E2%7D%20%5C%20dV%20%3D%5Cdfrac%7B81%20%5C%20%20%5Cpi%7D%7B80%7D%7D)
U need to didvid the donuts price to the pricwao coffe nd the coffe price to donut price
9514 1404 393
Answer:
$44.49
Step-by-step explanation:
The total cost before tax will be ...
$49.96 +49.96 + 0.50(49.96) = $124.90
With tax added, the cost is ...
$124.90 × 1.071 = $133.77
Then the average cost per shirt for the 3 shirts is ...
$133.77/3 = $44.59
The mean cost of a shirt is $44.59.