Answer: -
3.3° C
Explanation: -
Mass of water m = 180.5 g
Energy released as heat Q = 2494 J
Specific heat is defined as the heat required to raise the temperature of the unit mass of a given substance by 1 C.
Specific heat of water Cp = 4.184 (J/g)⋅∘C
Using the formula
Q = m x Cp x ΔT
We get temperature change ΔT = Q / (m x Cp)
= 2494 J / ( 180.5 g x 4.184 (J/g)⋅∘C
= 3.3° C
Thus the temprature change, (ΔT), of the wateris 3.3 °C if 180.5 g of water sat in the copper pipe from part A, releasing 2494 J of energy to the pipe
Answer:
Equilibrium in ecology refers to a state that occurs such that a small disturbance or change is counter balanced by another change so that the community is restored to its original state. Thus, as a community goes through multiple changes through each stage of succession, it is not in equilibrium.
Answer:
The answer to your question is 242 ml
Explanation:
Data
HI 0.211 M Volume = x
KMnO₄ 0.354 M Volume = 24 ml
Balanced Chemical reaction
12HI + 2KMnO₄ + 2H₂SO₄ → 6I₂ + Mn₂SO₄ + K₂SO₄ + 8H₂O
Process
1.- Calculate the moles of KMnO₄ 0.354 M in 24 ml
Molarity = moles / volume (L)
moles = Molarity x volume (L)
moles = 0.354 x 0.024
moles = 0.0085
2.- From the balanced chemical reaction we know that HI and KMnO₄ react in the proportion 12 to 2. Then,
12 moles of HI --------------- 2 moles of KMnO₄
x --------------- 0.0085 moles of KMnO₄
x = (0.0085 x 12)/2
x = 0.051 moles of HI
3.- Calculate the milliliters of HI 0.211 M
Molarity = moles/volume
Volume = moles/molarity
Volume = 0.051/0.211
Volume = 0.242 L or Volume = 242 ml
Hey there,
Answer:
4 valence electrons.
Hope this helps :D
<em>~Top☺</em>