<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em>
If we can match teh bases we can solve
because if x=x and xᵃ=xᵇ, we can conclude that a=b
16=2⁴
32=2⁵
rememeber that




2=2 so we conclude that 4(3x+2)=5(-2x-7)
4(3x+2)=5(-2x-7)
expand/distribute
12x+8=-10x-35
add 10x both sides
22x+8=-35
minus 8 both sides
22x=-43
divide both sides by 22
x=-43/22
Answer:
Step-by-step explanation:
H = V/ pie r^2
H = 
R= 5 because the radius is half the diameter
Pies cancel out leaving you with:
H = 2200/5^2
H = 2200/25
H = 88
Hope this helps :)
The answer is 32
Solution for 40 is what percent of 125:
40:125*100 =
( 40*100):125 =
4000:125 = 32
Now we have: 40 is what percent of 125 = 32
Question: 40 is what percent of 125?
Percentage solution with steps:
Step 1: We make the assumption that 125 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$x.
Step 3: From step 1, it follows that $100\%=125$100%=125.
Step 4: In the same vein, $x\%=40$x%=40.
Step 5: This gives us a pair of simple equations:
$100\%=125(1)$100%=125(1).
$x\%=40(2)$x%=40(2).
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{125}{40}$
100%
x%=
125
40
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{40}{125}$
x%
100%=
40
125
$\Rightarrow x=32\%$⇒x=32%
Therefore, $40$40 is $32\%$32% of $125$125.