Let the first number of the five we are looking for equal n.
Because the numbers are consecutive, the next four can be expressed as (n+1), (n+2), (n+3) and (n+4).
Our series of 5 numbers is therefore n,(n+1),(n+2),(n+3),(n+4).
We are told the sum of the squares of the first 3 is equal to the sum of the squares of the last 2 therefore:
n² + (n+1)² + (n+2)² = (n+3)² + (n+4)²
expand all the brackets to give
n² + n² + 2n + 1 + n² + 4n + 4 = n² + 6n + 9 + n² + 8n + 16
3n²+6n+5 = 2n²+14n+25
n²-8n-20=0
factorising this gives us
(n+2)(n-10) = 0 so the solutions are n=10 and n=-2
That means that n,(n+1),(n+2),(n+3),(n+4) could be [-2, -1, 0, 1 and 2] or [10, 11, 12, 13 and 14].
Since the question asks for whole numbers, and negative numbers are not classed as whole numbers, the numbers we want must be 10, 11, 12, 13 and 14.
You can check this on a calculator by doing 10² + 11² + 12² (=365) and 13² + 14² (=365).
We are given the equation of a line
y = -2x + 1
We have to find the value of y at three different values of x i.e. at x =0, -3 and 1
In order to find the value of y at any given x, simply replace x by that number.
So, for x=0, we will replace x by 0 to find the value of y. So y will be:
y = -2(0) + 1
y = 1
This can be expressed as an ordered pair as (0,1)
Similarly for x=-3, we get:
y = -2(-3) + 1 = 6 + 1
y = 7
This can be expressed as an ordered pair as (-3, 7)
And, finally for x=1, we get:
y= -2(1) + 1 = -2 + 1
y= -1
This can be expressed as an ordered pair as (-1, -1)
Answer:
<em>(</em><em> </em><em>2</em><em> </em><em>,</em><em>-1</em><em> </em><em>,</em><em>3</em><em>)</em>
Step-by-step explanation:
<em>x-</em><em>2</em><em>y</em><em> </em><em>+</em><em> </em><em>z</em><em> </em><em>=</em><em> </em><em>7</em>
<em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em><em>y</em><em> </em><em>+</em><em> </em><em>z</em><em> </em><em>=</em><em> </em><em>1</em><em>4</em>
<em>2</em><em>x-</em><em> </em><em>2</em><em>y</em><em> </em><em>+</em><em>z</em><em> </em><em>=</em><em>3</em>
<em>WILL</em><em> </em><em>YOU MARK</em><em> </em><em>ME BRAINLIEST</em><em> </em>
Answer:
504 dollares 56 dollars off
Step-by-step explanation: