Answer:
6
Step-by-step explanation:
F(-1)= -3 is (-1,-3) and f(2) = 6 is (2,6) where f(x) = y
y=mx + b is the slope-intercept form whereas m equals the slope (rate of change) and b equals the y-intercept (initial amount/what y is when x is 0.)
First, we need to find the slope between the two points (-1,-3) and (2,6). To find the slope we could use one of it's formulas

.
1. (-1,-3)
2. (2,6)

→

→

The slope is 3 (

). Thusly, y = 3x + b
To find out the y-intercept, we can reverse the slope. [Note: This

is in

where rise is 'y' and run is 'x'. Reversed would be

]. Take the second ordered pair and use our reversed slope on it until we get 0 for x.
(2, 6) ⇒ (2 - 1, 6 -3) ⇒ (1, 3) ⇒ (0,0)
Y-intercept is 0. Therefore,
y= 3x + 0 [NOTE: y = f(x), so if you want it in function notation form it's just f(x) = 3x + 0.]
Answer:
Step-by-step explanation:
Reduction to normal from using lambda-reduction:
The given lambda - calculus terms is, (λf. λx. f (f x)) (λy. Y * 3) 2
For the term, (λy. Y * 3) 2, we can substitute the value to the function.
Therefore, applying beta- reduction on "(λy. Y * 3) 2" will return 2*3= 6
So the term becomes,(λf. λx. f (f x)) 6
The first term, (λf. λx. f (f x)) takes a function and an argument, and substitute the argument in the function.
Here it is given that it is possible to substitute the resulting multiplication in the result.
Therefore by applying next level beta - reduction, the term becomes f(f(f(6)) (f x)) which is in normal form.
Answer: 1.18519
Step-by-step explanation:
1 5/27 = 32/27
= approximate value = 1.18519
50% because of your question so the answer is 50%