If it's a geometric sequence then:

We calculate the fourth and fifth term of the sequence:

Answer:
In year 4 15.1875 animals.
In year 5 11.390625 animals.
The answer to your question is: Yes, someone undoubtedly can.
Although you haven't asked to be told or shown how to solve it, I'm here
already, so I may as well stick around and go through it with you.
The sheet is telling you to find the solutions to two equations, AND THEN
DO SOMETHING WITH THE TWO SOLUTIONS. But you've cut off the
instructions in the pictures, so all we have are the two equations, and
you'll have to figure out what to do with their solutions.
<u>First equation:</u>
(2/5) x - 6 = -2
Add 6 to each side:
(2/5) x = 4
Multiply each side by 5:
2x = 20
Divide each side by 2 :
<u>x = 10</u>
<u>Second equation:</u>
-3y + 1/4 = 13/4
Subtract 1/4 from each side:
-3y = 12/4
Multiply each side by 4 :
-12 y = 12
Divide each side by -12 :
<u> y = -1</u>
The solution would be like
this for this specific problem:
<span>V = ∫ dV </span><span>
<span>= ∫0→2 ∫
0→π/2 ∫ 0→ 2·r·sin(φ) [ r ] dzdφdr </span>
<span>= ∫0→2 ∫
0→π/2 [ r·2·r·sin(φ) - r·0 ] dφdr </span>
<span>= ∫0→2 ∫
0→π/2 [ 2·r²·sin(φ) ] dφdr </span>
<span>= ∫0→2 [
-2·r²·cos(π/2) + 2·r²·cos(0) ] dr </span>
<span>= ∫0→2 [
2·r² ] dr </span>
<span>=
(2/3)·2³ - (2/3)·0³ </span>
<span>= 16/3 </span></span>
So the volume of the
given solid is 16/3. I am hoping that these answers have satisfied
your query and it will be able to help you in your endeavors, and if you would
like, feel free to ask another question.
X=y-a
by simplifying both sides of the equation then isolating the variabke
7:14:21
Add 1,2,3 = 6
Divide 6 by 42=7
Then 7x1=7
7x2=14
7x3=21