Answer:
how
Step-by-step explanation:
 
        
             
        
        
        
Base case: if <em>n</em> = 1, then
1² - 1 = 0
which is even.
Induction hypothesis: assume the statement is true for <em>n</em> = <em>k</em>, namely that <em>k</em> ² - <em>k</em> is even. This means that <em>k</em> ² - <em>k</em> = 2<em>m</em> for some integer <em>m</em>.
Induction step: show that the assumption implies (<em>k</em> + 1)² - (<em>k</em> + 1) is also even. We have
(<em>k</em> + 1)² - (<em>k</em> + 1) = <em>k</em> ² + 2<em>k</em> + 1 - <em>k</em> - 1
… = (<em>k</em> ² - <em>k</em>) + 2<em>k</em>
… = 2<em>m</em> + 2<em>k</em>
… = 2 (<em>m</em> + <em>k</em>)
which is clearly even. QED
 
        
             
        
        
        
 
x+(-2) >3
open the bracket
x-2>3
collect the like terms by taking 2 to the other side
x>3+2
x>6
 
 
        
             
        
        
        
Answer:A
Step-by-step explanation:
I just did the test and got a 100
 
        
             
        
        
        
Lines of symmetry if the triangle is isosceles. 
4, 2, 1