Given the figure of a regular pyramid
The base of the pyramid is a hexagon with a side length = 6
The lateral area is 6 times the area of one of the side triangles
So, the side triangle has a base = 6
The height will be:
![\begin{gathered} h^2=6^2+(\frac{\sqrt[]{3}}{2}\cdot6)^2=36+27=63 \\ h=\sqrt[]{63} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20h%5E2%3D6%5E2%2B%28%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%5Ccdot6%29%5E2%3D36%2B27%3D63%20%5C%5C%20h%3D%5Csqrt%5B%5D%7B63%7D%20%5Cend%7Bgathered%7D)
so, the lateral area =
Answer:
1. Objective function is a maximum at (16,0), Z = 4x+4y = 4(16) + 4(0) = 64
2. Objective function is at a maximum at (5,3), Z=3x+2y=3(5)+2(3)=21
Step-by-step explanation:
1. Maximize: P = 4x +4y
Subject to: 2x + y ≤ 20
x + 2y ≤ 16
x, y ≥ 0
Plot the constraints and the objective function Z, or P=4x+4y)
Push the objective function to the limit permitted by the feasible region to find the maximum.
Answer: Objective function is a maximum at (16,0),
Z = 4x+4y = 4(16) + 4(0) = 64
2. Maximize P = 3x + 2y
Subject to x + y ≤ 8
2x + y ≤ 13
x ≥ 0, y ≥ 0
Plot the constraints and the objective function Z, or P=3x+2y.
Push the objective function to the limit in the increase + direction permitted by the feasible region to find the maximum intersection.
Answer: Objective function is at a maximum at (5,3),
Z = 3x+2y = 3(5)+2(3) = 21
The slope-intercept form of a line:

We have:

Substitute:


Put the values of coordinates of the point (1, 5) to the equation of a line:

Answer: 
Answer:
Hello! answer: 76
Step-by-step explanation:
Formula to find area is base × height ÷ by 2 12 + 7 = 19 19 × 2 = 152 152 ÷ 2 = 76 HOPE THAT HELPS!
52 cards - 4 kings = 48 other cards
Probability of picking something other than a king would be 48/52
48/52 can be reduced to 12/13 probability.