It would appear to be Red because as said above, paper reflects all the colors that fall on it.
Answer:
Velocity of electron will be 
Explanation:
We have given distance across the plate d = 2 mm 
Potential difference V = 6 volt
We know that potential difference at any distance is given by
V = Ed , here V is potential difference, E is electric field and d is distance
So 
Charge on electron 
We know that expression of velocity is given by
, here q is charge on electron, E is electric field and d is distance
So 
When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Answer air circulating in a hot air balloon
Explanation:
- Mass of the diver (m) = 90 Kg.
- Height of the board from the ground (h) = 10 m.
- Acceleration due to gravity (g) = 9.8 m/s^2.
- Height of the diver from the ground when he reaches point C (x) = 5m
- Initial velocity (u) = 0 m/s
- We know, gravitational potential energy of a body = mass × acceleration due to gravity × height.
- Therefore, the gravitational potential energy of the diver when he reaches point C (GPE) = mg(h - x)
- or, GPE = [90 × 9.8 × (10-5)] J
- or, GPE = [90 × 9.8 × 5] J
- or, GPE = 4410 J
- For a freely falling body,
- v^2 - u^2 = 2gh
- or, v^2 = 2gh
- We know, kinetic energy of a body = 1/2 mv^2
- Therefore, kinetic energy of the diver when he reaches point C (KE) = 1/2 m(2gx)
- Here, 2gx = (2 × 9.8 × 5) = 98 (m/s)^2
- We have already seen v^2 = 2gh
- or, v = √2gh
- So, the velocity of the diver = √2gx = √98 m/s = 9.9 m/s
<u>Answers:</u>
<em><u>The </u></em><em><u>gravitational</u></em><em><u> potential</u></em><em><u> energy</u></em><em><u> of</u></em><em><u> the</u></em><em><u> </u></em><em><u>diver </u></em><em><u>when </u></em><em><u>he</u></em><em><u> reaches</u></em><em><u> point</u></em><em><u> C</u></em><em><u> </u></em><em><u>is </u></em><em><u>4</u></em><em><u>4</u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>J.</u></em>
<em><u>The </u></em><em><u>velocity</u></em><em><u> </u></em><em><u>of </u></em><em><u>the </u></em><em><u>diver </u></em><em><u>is </u></em><em><u>9</u></em><em><u>.</u></em><em><u>9</u></em><em><u> </u></em><em><u>m/</u></em><em><u>s.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.