Answer
a) For the rock






b)
for maximum range




c) The value of θ is the same on every planet as g divides out.
Answer:
weight at height = 100 N .
Explanation:
The problem relates to variation of weight due to change in height .
Let g₀ and g₁ be acceleration due to gravity , m is mass of the object .
At the surface :
Applying Newton's law of gravitation
mg₀ = G Mm / R²
At height h from centre
mg₁ = G Mm /h²
Given mg₀ = 400 N
400 = G Mm / R²
400 = G Mm / (6400 x 10³ )²
G Mm = 400 x (6400 x 10³ )²
At height h from centre
mg₁ = 400 x (6400 x 10³ )²/ ( 2 x 6400 x 10³)²
= 400 / 4
= 100 N .
weight at height = 100 N
They can either cancel each other or add up to a resultant force with a certain direction and modulus.
Newton's second law states that F=m*a, where F is the resultant force, ie ΣF.
Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib
Answer:
v = 66.4 m/s
Explanation:
As we know that plane is moving initially at speed of

now we have




now in Y direction we can use kinematics



since there is no acceleration in x direction so here in x direction velocity remains the same
so we will have


