I'm almost positive the answer is a.
Answer:
<h2>b) 4230 J
</h2>
Explanation:
Step one:
given data
extension= 40cm
Spring constant K= 52.9N/cm
Step two:
Required
the Kinetic Energy KE
the expression to find the kinetic energy is
KE= 1/2ke^2
substituting our data we have
KE= 1/2*52.9*40^2
KE=0.5*52.9*1600
KE= 42320Joules
<u>The answer is b) 4230 J
</u>
1) The average velocity is 
2) The instantaneous velocity is 
Explanation:
1)
The average velocity of an object is given by

where
d is the displacement
t is the time elapsed
In this problem, the position of the particle is given by the function

where t is the time.
The position of the particle at time t = 6 sec is

While the position at time t = 12 sec is

So, the displacement is

And therefore the average velocity is

2)
The instantaneous velocity of a particle is given by the derivative of the position vector.
The position vector is

By differentiating with respect to t, we find the velocity vector:

Therefore, the instantaaneous velocity at any time t can be found by substituting the value of t in this expression.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
A parsec is a measurement of distance.
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>