Answer:
Explanation:
M(s) → M (g ) + 20.1 kJ --- ( 1 )
X₂ ( g ) → 2X (g ) + 327.3 kJ ---- ( 2 )
M( s) + 2 X₂(g) → M X₄ (g ) - 98.7 kJ ----- ( 3 )
( 3 ) - 2 x ( 2 ) - ( 1 )
M( s) + 2 X₂(g) - 2 X₂ ( g ) - M(s) → M X₄ (g ) - 98.7 kJ - 2 [ 2X (g ) + 327.3 kJ ] - M (g ) - 20.1 kJ
0 = M X₄ (g ) - 4 X (g ) - M (g ) - 773.4 kJ
4 X (g ) + M (g ) = M X₄ (g ) - 773.4kJ
heat of formation of M X₄ (g ) is - 773.4 kJ
Bond energy of one M - X bond = 773.4 / 4 = 193.4 kJ / mole
Answer:
5.9 × 10^-6.
Explanation:
In the arrangements of crystal solids there is likely going to be an imperfection or defect and one of the defect or imperfections in the arrangements of solids is known as the Schottky defects. The Schottky defects is a kind of lattice arrangements imperfection that occurs when positively charged ions and negatively charged ions leave their position.
So, let us delve right into the solution of the question. We will be making use of the formula below;
Wb/ W = e^ - c/ 2kT.
Where Wb/ W= fraction of lattice sites, c= energy for defect formation = 1.86 eV, and T = temperature= 623° C= 896 k.
So, Wb/ W = e ^ -1.86/ (2 × 896 × 8.62 × 10^ -5).
Wb/ W= 0.000005896557435956372.
Wb/ W=5.9 × 10^-6.
Weaker the intermolecular forces present the less the energy is required to break these forces and change its state from liquid to vapors/gas.
More stronger the intermolecular forces the less the volatile the substance be as the more energy or temperature is required to overcome these intermolecular forces
Answer:
The mass of helium in the balloon is 1.125 grams
Explanation:
Step 1: Data given
Volume of helium = 6.3 L
Molar mass of helium = 4.0 g/mol
Step 2: Calculate moles helium
1 mol gas = 22.4 L
6.3 L = 0.28125 moles
Step 3: Calculate mass of helium
Mass = moles helium * molar mass helium
Mass = 0.28125 * 4.0 g/mol
Mass = 1.125 grams
The mass of helium in the balloon is 1.125 grams