1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
2 years ago
9

Please help this is late and i need to do it now

Mathematics
1 answer:
ollegr [7]2 years ago
5 0

Answer:

AB is similar to YZ.

AC is similar to YX.

CB is similar to XZ.

Step-by-step explanation:

You might be interested in
An unopened cereal box contains `15/28` cubic foot of cereal. If the box is full, and the length and height of the box are `5/7`
babymother [125]

Answer:

A. `1/2` foot

Step-by-step explanation:

The computation of the width of the box is shown below:

15 ÷ 28 = (5 ÷ 7)(1 1 ÷ 2)(width)

15 ÷ 28 = (5 ÷ 7)(3 ÷ 2)width

15 ÷ 28 = (15 ÷ 14)width

(15 ÷ 28) ÷ (15 ÷ 14) = width

(15 ÷ 28) × (14 ÷ 15) = width

w = 14 ÷ 28

= 1 ÷ 2 ft

7 0
3 years ago
Read 2 more answers
Please help me solve for x
Brrunno [24]

Answer:

can you show a picture

Step-by-step explanation:

it depends on the situation and the problem but normally you would use the other numbers to figure out what number goes in "x"

3 0
2 years ago
Read 2 more answers
A rectangular swimming pool measures 40 ft by 60 ft and is surrounded by a path of uniform width around the four edges. The peri
Alex_Xolod [135]

Answer:

<em><u>6ft</u></em>

Step-by-step explanation:

<em><u>Lets</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em><em><u> </u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>surrounding </u></em><em><u>path</u></em><em><u> </u></em><em><u>wil</u></em><em><u>l</u></em><em><u> </u></em><em><u>add</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>pool</u></em><em><u> </u></em><em><u>dimension</u></em><em><u>,therefore</u></em><em><u> </u></em><em><u>over</u></em><em><u> </u></em><em><u>all</u></em><em><u> </u></em><em><u>dimesion</u></em><em><u>:</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>over</u></em><em><u>all</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u> </u></em><em><u>Simplify</u></em><em><u> </u></em><em><u>divide</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>2,</u></em><em><u> </u></em><em><u>result</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u> </u></em><em><u>Combine</u></em><em><u> </u></em><em><u>like</u></em><em><u> </u></em><em><u>term</u></em><em><u>s</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em>

<em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u>ft</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>th</u></em><em><u>e</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em>

<em><u>check</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>finding</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>with</u></em><em><u> </u></em><em><u>these</u></em><em><u> </u></em><em><u>values</u></em><em><u>;</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>12</u></em><em><u> </u></em><em><u>ft</u></em><em><u> </u></em>

<em><u>2</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em>

<em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>5</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>7</u></em><em><u>2</u></em><em><u>)</u></em>

<em><u>1</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u>;</u></em><em><u> </u></em><em><u>confirms</u></em><em><u> </u></em><em><u>our</u></em><em><u> </u></em><em><u>solution</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>ft</u></em>

5 0
3 years ago
Write the relation as a set of on rdered pai
kirill115 [55]

The relation as a set of ordered pairs is d. {(–2, 1), (0, -1), (2, -3)}.

Step-by-step explanation:

Step 1:

First, we plot the three points on the given graph.

The coordinates are given in the following form (x coordinate, y coordinate) where the symbol of the coordinates depends on the quadrant on which the point lies.

For the first quadrant, both x and y values are positive.

For the second quadrant, the x value is negative but the y value is positive.

For the third quadrant, both the values of x and y are negative.

For the fourth quadrant, the x value is positive but the y value is negative.

Step 2:

The first point has an x value of 2 and a y value of 1 since it is in the second quadrant, the coordinates are (-2, 1).

The second point has an x value of 0 and a y value of 1 since it is in the third or fourth quadrant, the coordinates are (0, -1).

The third point has an x value of 2 and a y value of 3 since it is in the fourth quadrant, the coordinates are (2, -3).

So the coordinates are {(–2, 1), (0, -1), (2, -3)} which is option d.

6 0
3 years ago
a parking garage charges $2.50 base free plus an hourly rate of $4.00. If you hve most $12.50 how many parking you can​
snow_lady [41]

Answer: 2.5 hours or 2 hr and 30 min

Step-by-step explanation:

We can set up an equation to find how many hours you can park.

2.5+4x=12.5

The 2.5 comes from the base fee. The 4x is the hourly rate, where x is hours. The 12.5 is the total amount of money you have.

Since we have our equation, we can solve for x.

4x=10

x=2.5

You can park for 2.5 hours, or 2 hours and 30 min.

7 0
3 years ago
Other questions:
  • a single tree produces about 2.6 × 10² lb of oxygen each year. the amazon rainforest has about 3.9×1011 trees. about how many po
    12·1 answer
  • Need help please ????
    8·1 answer
  • What is the definition of point-slope form?
    10·2 answers
  • Graph the following and determine in which quadrants the graphs lie: y= 1/3x
    11·1 answer
  • Can anyone teach me how to solve this?
    12·1 answer
  • Please help asap!!!!!!!!!!!
    5·2 answers
  • How many solutions are possible for a triangle with A = 113° , a = 15, and b = 8
    14·1 answer
  • Which is more 0.225 or 0.25
    12·2 answers
  • For the function above, what is the missing value in the table below:
    9·1 answer
  • Which number can each term of the equation be multiplied by to eliminate the fractions before solving?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!