1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
3 years ago
7

If i make 118 bucks an hour how much would i make in a year

Mathematics
1 answer:
inn [45]3 years ago
3 0

Answer:

118*360=42480..........

You might be interested in
7 feet =___inches can some one help me with this​
ozzi

Answer:

84 in.

Step-by-step explanation:

multiply 12 by 7

there are 12 inches in a foot and 7 feet

5 0
3 years ago
Read 2 more answers
Choose the simplified solution(s) to this equation: ?- 128 - 0 18 1642 V128 18/2 Question 33 )​
tatiyna

D is correct answer

±8√2

7 0
3 years ago
Given the system below, which points are solutions? (check all that apply)
LuckyWell [14K]
It’s 3.46 and 6.64hrhss
7 0
3 years ago
Can someone please help me I really need help please help me please help me thank you
alekssr [168]

Answer:  None. The question asks about $4 per hour.

Step-by-step explanation:   The cost changes by $4 every 2 hours.

That is $2 per hour.

6 0
3 years ago
Find the absolute maximum and minimum values of f(x, y) = x+y+ p 1 − x 2 − y 2 on the quarter disc {(x, y) | x ≥ 0, y ≥ 0, x2 +
Andreas93 [3]

Answer:

absolute max: f(x,y)=1/2+p1 ; at P(1/2,1/2)

absolute min: f(x,y)=p1 ; at U(0,0), V(1,0) and W(0,1)

Step-by-step explanation:

In order to find the absolute max and min, we need to analyse the region inside the quarter disc and the region at the limit of the disc:

<u>Region inside the quarter disc:</u>

There could be Minimums and Maximums, if:

∇f(x,y)=(0,0) (gradient)

we develop:

(1-2x, 1-2y)=(0,0)

x=1/2

y=1/2

Critic point P(1/2,1/2) is inside the quarter disc.

f(P)=1/2+1/2+p1-1/4-1/4=1/2+p1

f(0,0)=p1

We see that:

f(P)>f(0,0), then P(1/2,1/2) is a maximum relative

<u>Region at the limit of the disc:</u>

We use the Method of Lagrange Multipliers, when we need to find a max o min from a f(x,y) subject to a constraint g(x,y); g(x,y)=K (constant). In our case the constraint are the curves of the quarter disc:

g1(x, y)=x^2+y^2=1

g2(x, y)=x=0

g3(x, y)=y=0

We can obtain the critical points (maximums and minimums) subject to the constraint by solving the system of equations:

∇f(x,y)=λ∇g(x,y) ; (gradient)

g(x,y)=K

<u>Analyse in g2:</u>

x=0;

1-2y=0;

y=1/2

Q(0,1/2) critical point

f(Q)=1/4+p1

We do the same reflexion as for P. Q is a maximum relative

<u>Analyse in g3:</u>

y=0;

1-2x=0;

x=1/2

R(1/2,0) critical point

f(R)=1/4+p1

We do the same reflexion as for P. R is a maximum relative

<u>Analyse in g1:</u>

(1-2x, 1-2y)=λ(2x,2y)

x^2+y^2=1

Developing:

x=1/(2λ+2)

y=1/(2λ+2)

x^2+y^2=1

So:

(1/(2λ+2))^2+(1/(2λ+2))^2=1

\lambda_{1}=\sqrt{1/2}*-1 =-0.29

\lambda_{2}=-\sqrt{1/2}*-1 =-1.71

\lambda_{2} give us (x,y) values negatives, outside the region, so we do not take it in account

For \lambda_{1}: S(x,y)=(0.70, 070)

and

f(S)=0.70+0.70+p1-0.70^2-0.70^2=0.42+p1

We do the same reflexion as for P. S is a maximum relative

<u>Points limits between g1, g2 y g3</u>

we need also to analyse the points limits between g1, g2 y g3, that means U(0,0), V(1,0), W(0,1)

f(U)=p1

f(V)=p1

f(W)=p1

We can see that this 3 points are minimums relatives.

<u>Conclusion:</u>

We compare all the critical points P,Q,R,S,T,U,V,W an their respective values f(x,y). We find that:

absolute max: f(x,y)=1/2+p1 ; at P(1/2,1/2)

absolute min: f(x,y)=p1 ; at U(0,0), V(1,0) and W(0,1)

4 0
3 years ago
Other questions:
  • If a woman making $25 an hour gets a 10 raise how much will she now make in an 8 hour work day?
    14·1 answer
  • Triangle 1 is transformed as shown in the diagram, resulting in triangle 3. Describe the transformations.
    13·2 answers
  • 4. The Gold family sold their house for $450,000. They paid a realty
    15·1 answer
  • If a hurricane was headed your way, would you evacuate? The headline of a press release issued January 21, 2009 by the survey re
    10·1 answer
  • Which equation could be used to solve the problem?
    13·2 answers
  • Given h(x) = -x + 1, find h(0).<br> Answer:
    9·2 answers
  • What is the range?<br><br> (-7, 4) (2, 6) (1, -3) (5, 0) (9, -1)
    11·1 answer
  • Help pls ill mark u brainliest :(
    6·2 answers
  • B={x:x is a negative integer between -10 and -1 inclusive}​
    11·1 answer
  • Express each of the following complex numbers in the form of x+iy<br><br> 1+i/3+i
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!