1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

Find the solution of given expression

ormula1" title=" \sqrt{652 \times 652} " alt=" \sqrt{652 \times 652} " align="absmiddle" class="latex-formula">
​
Mathematics
2 answers:
docker41 [41]3 years ago
6 0

Answer:

√{652×652}=√652²=±652

Step-by-step explanation:

wolverine [178]3 years ago
3 0

Answer:

652

Step-by-step explanation:

\sqrt{652 \times 652} is equal to \sqrt{652^{2} }, and the square root of a number squared is always the original number, so \sqrt{652^{2} } is equal to 652.

You might be interested in
Help please !!!!!!!!
Zepler [3.9K]

Step-by-step explanation:

1= C 30

2= A 75

3= D 180

4= A 75

5= B 150

6 0
3 years ago
I need the answer pls
AleksAgata [21]

the answer is 32.........

8 0
3 years ago
One and three hundred twenty four thousandths in decimal form
Anastaziya [24]
1.324 I believe


One is the whole number, 324 thousandths should be the decimal after
8 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
What is the value of x in the equetion 3/4(1/4x+8)-(1/2+2)-3/8(4-x)-1/4x?​
ikadub [295]
3/4*1/4= 3/16 or 0.1875 (you times 3 by 1 and 4 by 4)
3/4*8= 6
first bracket = 3/16+ 6
1/2+2= 2 1/2 or 2.5
second bracket = -2.5
-3/8*4= -1.5
-3/8*x= -3/8x or -0.375x
third bracket= -0.375x
so

(0.1875+6) - (2.5) - (0.375x) - (0.25x)
collect like terms
6.2 - 2.5 = 3.7
0.375x - 0.25x = 0.125x
3.7-0.125x is your answer in decimal form

(3/16+6/1) - (2 1/2) - (3/8x-1/4x)

(6 3/16 - 2 1/2 )

(3 11/16)

3/8x-1/4x= 1/8x

final answer = 3 11/16 - 1/8x
-
6 0
3 years ago
Other questions:
  • The sum of six consecutive even integers is 294. What is the smallest of the six integers??
    13·2 answers
  • Basic Cookie Recipe:
    11·1 answer
  • Need some help please ASAP
    8·2 answers
  • Jasmine fills her bathtub, takes a bath, and then drains the tub. Which graph best depicts this situation by relating time to wa
    6·2 answers
  • Given the functions f(x) = – 3x – 5 and g(x) = x^2 – 4, find g(f(x)).
    14·1 answer
  • Please help, I don’t know how to do this one.!!
    8·1 answer
  • HELP DUE IN 15 MIN<br><br><br> x =
    7·2 answers
  • I just need help on these two questions ​
    5·1 answer
  • ** if u can answer this quickly it will be very appreciated!**
    8·1 answer
  • Rosa's dog had three puppies. After a few months, she measured the weight of the four dogs. The weights were 16 pounds, 18.5 pou
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!