Answer:
Halogens such as chlorine, bromine and iodine have properties that enable them to react with other elements to form important salts such as sodium chloride, also known as table salt.
Explanation:
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Answer:
1171.12 mL
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (milliliters)
V2 = final volume (milliliters)
T1 = initial temperature (Kelvin)
T2 = final temperature (Kelvin)
According to the information provided in this question:
P1 = 300 mmHg
P2 = 140 mmHg
V1 = 400 mL
V2 = ?
T1 = 0°C = 273K
T2 = 100°C = 100 + 273 = 373K
Using P1V1/T1 = P2V2/T2
300 × 400/273 = 140 × V2/373
120000/273 = 140V2/373
120000 × 373 = 273 × 140V2
44760000 = 38220V2
V2 = 44760000 ÷ 38220
V2 = 1171.115
The new volume is 1171.12 mL
Answer:
The molarity of the solution is 0,12 M.
Explanation:
We calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case KOH) in 1000ml of solution (1 liter):
0,25 L solution----- 0,030 moles of KOH
1 L solution----x= (1 L solution x 0,030 moles of KOH)/0,25 L solution
x= 0,12 moles of KOH ---> <em>The solution is 0,12 M</em>
Answer:
0.713atm for CO and 0.287atm for CO₂
Explanation:
Based on the reaction:
FeO(s) + CO(g) ⇋ Fe(s) + CO₂(g)
Kp is defined as:
= 0.403
When 1.00 atm of CO react with an excess of FeO, the pressures in equilibrium are:
PCO = 1.00atm - x
PCO₂ = x
<em>Where x represents the reaction coordinate.</em>
Replacing in Kp expression:

0.403 - 0.403x = x
0.403 = 1.403x
0.287atm = x
Thus, pressures in equilibrium are:
PCO = 1.00atm - x = <em>0.713atm</em>
PCO₂ = x = <em>0.287atm</em>
<em></em>