Length: w+4
Width:w
Perimeter:44
Area: L times w
P=44
44=2(w)+2(w+4)
44=2w+2w+8
44=4w+8
36=4w
w=9
L=w+4
L=9+4
L=13
Area should equal 117 cm squared
Try dividing the surface area of the wall by 6.
Answer:
A. 0.5
B. 0.32
C. 0.75
Step-by-step explanation:
There are
- 28 students in the Spanish class,
- 26 in the French class,
- 16 in the German class,
- 12 students that are in both Spanish and French,
- 4 that are in both Spanish and German,
- 6 that are in both French and German,
- 2 students taking all 3 classes.
So,
- 2 students taking all 3 classes,
- 6 - 2 = 4 students are in French and German, bu are not in Spanish,
- 4 - 2 = 2 students are in Spanish and German, but are not in French,
- 12 - 2 = 10 students are in Spanish and French but are not in German,
- 16 - 2 - 4 - 2 = 8 students are only in German,
- 26 - 2 - 4 - 10 = 10 students are only in French,
- 28 - 2 - 2 - 10 = 14 students are only in Spanish.
In total, there are
2 + 4 + 2 + 10 + 8 + 10 +14 = 50 students.
The classes are open to any of the 100 students in the school, so
100 - 50 = 50 students are not in any of the languages classes.
A. If a student is chosen randomly, the probability that he or she is not in any of the language classes is

B. If a student is chosen randomly, the probability that he or she is taking exactly one language class is

C. If 2 students are chosen randomly, the probability that both are not taking any language classes is

So, the probability that at least 1 is taking a language class is

Answer: draw a diagonal line
Step-by-step explanation:
like this:
since it's going up, it's a positive slope
Consider such events:
A - slip with number 3 is chosen;
B - the sum of numbers is 4.
You have to count 
Use formula for conditional probability:

1. The event
consists in selecting two slips, first is 3 and second should be 1, because the sum is 4. The number of favorable outcomes is exactly 1 and the number of all possible outcomes is 5·4=20 (you have 5 ways to select 1st slip and 4 ways to select 2nd slip). Then the probability of event
is

2. The event
consists in selecting two slips with the sum 4. The number of favorable outcomes is exactly 2 (1st slip 3 and 2nd slip 1 or 1st slip 1 and 2nd slip 3) and the number of all possible outcomes is 5·4=20 (you have 5 ways to select 1st slip and 4 ways to select 2nd slip). Then the probability of event
is

3. Then

Answer: 