1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
13

Solve 4b +8= 6b - 4 b= ?​

Mathematics
2 answers:
AnnyKZ [126]3 years ago
6 0

Answer:

B = 6

Step-by-step explanation:

1. 4b + 8 = 6b - 4

2. Add 4 to both sides: 4b + 12 = 6b

3. Subtract 4b from both sides: 12 = 2b

4. Divide 12 by 2: b = 6

Brainliest Please.

igomit [66]3 years ago
3 0

Answer:

b = 6.

Step-by-step explanation:

4b + 8 = 6b - 4

4b - 6b = -4 - 8

-2b = -12

b = -12/-2

b = 6.

You might be interested in
The graph shows the relationship between time
musickatia [10]

Answer:

The machine can make 24 bottles of soda per minute

Step-by-step explanation:

Looking at the graph of the relationship, we can see that the number of bottles per minute simply represent the slope of the line

Thus, by calculating the slope using the given points, we can have the number of bottles per minute

We have the formula as;

m = (y2-y1)/(x2-x1)

(x1,y1) = (4,96)

(x2,y2) = (6,144)

m = (144-96)/(6-4) = 48/2 = 24

8 0
3 years ago
A scale drawing of a building has the scale 0.5in : 6ft. A wall is 30 ft long. How long will the wall be on the drawing?
g100num [7]
The scale 0.5 in : 6 ft, means that

any distance of 0.5 in on paper, represents 6 ft in reality


for example:
 
0.5*2= 1(in) represents 6*2=12 (ft)

0.5*4= 2(in) represents 6*4=24 (ft) 

0.5*10=5(in) represents 6*10=60 (ft) and so on...


Let the wall be x (in) in the drawing:

0.5 (in) represents 6 (ft),
 x (in) represents 30 (ft)
----------------------------------------

thus x = (0.5*30)/6 = 15/6= 2.5 (in)


Answer: 2.5 in
8 0
4 years ago
A B C D<br> WHICH ONE?<br> NEED HELP<br> AHHHHHHHHHH
svlad2 [7]
You were right already it’s A
5 0
3 years ago
The mean number of words per minute (WPM) read by sixth graders is 8888 with a standard deviation of 1414 WPM. If 137137 sixth g
Bingel [31]

Noticing that there is a pattern of repetition in the question (the numbers are repeated twice), we are assuming that the mean number of words per minute is 88, the standard deviation is of 14 WPM, as well as the number of sixth graders is 137, and that there is a need to estimate the probability that the sample mean would be greater than 89.87.

Answer:

"The probability that the sample mean would be greater than 89.87 WPM" is about \\ P(z>1.56) = 0.0594.

Step-by-step explanation:

This is a problem of the <em>distribution of sample means</em>. Roughly speaking, we have the probability distribution of samples obtained from the same population. Each sample mean is an estimation of the population mean, and we know that this distribution behaves <em>normally</em> for samples sizes equal or greater than 30 \\ n \geq 30. Mathematically

\\ \overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) [1]

In words, the latter distribution has a mean that equals the population mean, and a standard deviation that also equals the population standard deviation divided by the square root of the sample size.

Moreover, we know that the variable Z follows a <em>normal standard distribution</em>, i.e., a normal distribution that has a population mean \\ \mu = 0 and a population standard deviation \\ \sigma = 1.

\\ Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} [2]

From the question, we know that

  • The population mean is \\ \mu = 88 WPM
  • The population standard deviation is \\ \sigma = 14 WPM

We also know the size of the sample for this case: \\ n = 137 sixth graders.

We need to estimate the probability that a sample mean being greater than \\ \overline{X} = 89.87 WPM in the <em>distribution of sample means</em>. We can use the formula [2] to find this question.

The probability that the sample mean would be greater than 89.87 WPM

\\ Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}

\\ Z = \frac{89.87 - 88}{\frac{14}{\sqrt{137}}}

\\ Z = \frac{1.87}{\frac{14}{\sqrt{137}}}

\\ Z = 1.5634 \approx 1.56

This is a <em>standardized value </em> and it tells us that the sample with mean 89.87 is 1.56<em> standard deviations</em> <em>above</em> the mean of the sampling distribution.

We can consult the probability of P(z<1.56) in any <em>cumulative</em> <em>standard normal table</em> available in Statistics books or on the Internet. Of course, this probability is the same that \\ P(\overline{X} < 89.87). Then

\\ P(z

However, we are looking for P(z>1.56), which is the <em>complement probability</em> of the previous probability. Therefore

\\ P(z>1.56) = 1 - P(z

\\ P(z>1.56) = P(\overline{X}>89.87) = 0.0594

Thus, "The probability that the sample mean would be greater than 89.87 WPM" is about \\ P(z>1.56) = 0.0594.

5 0
3 years ago
Ryan has 1/2 pound of chocolate. He divides it into 4 equal portions. Write the amount of chocolate, in pounds, in each portion
Vladimir [108]

Answer:

1/8

Step-by-step explanation:

Ryan has 1/2 pound of chocolate

He divided into 4 portions

Therefore the amount each of them will get can be calculated as follows

1/2 ÷ 4

= 1/2 × 1/4

= 1/8

Hence each portion Is 1/8

7 0
3 years ago
Other questions:
  • Find the percent.<br><br> 9 is what percent of 16?
    15·2 answers
  • A technical machinist is asked to build a cubical steel tank that will hold 60L of water. Calculate in meters the smallest possi
    8·1 answer
  • Find the range of the function for the given domain. F(x)= 3x-8; {-2, -1, 0, 1, 2}
    8·1 answer
  • Find the equation of the solution to dydx=x6y through the point (x,y)=(1,3).
    10·1 answer
  • Given f(x)=-x+2f(x)=−x+2, find f(-1)f(−1).
    8·1 answer
  • Can someone help asap!!??​
    12·1 answer
  • How is -6.1 wrote in fraction form​
    6·2 answers
  • Explain your answer !!<br><br> Have a great day <br><br> Will give brainlst
    8·1 answer
  • Please I really need help I’ll give brainliest
    13·1 answer
  • Satellite
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!