Answer:
8.49
Step-by-step explanation:
there is a little formula related to the famous formula of Pythagoras.
it says that the height of a triangle is the square root of the product of both segments of the baseline (the segments the height splits the baseline into).
so, x is actuality the height of the triangle.
x = sqrt(3×24) = sqrt(72) = 8.49
Answer: 1
Step-by-step explanation:
3 copies of 1/3 would be 1/3+1/3+1/3= 1
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
B . Approaches -4
I’m pretty sure it’s -4
Answer:
Step-by-step explanation:
A) What is the speed of the pedestrian BC, CD, and DE?
Speed from B to C = distance/time = (40 - 20) / 4 = 20/4
= 5 km/h
Speed from C to D = distance/time = 0 / 2
= 0 km/h
Speed from D to E = distance/time = (20 - 0) / (10 - 6) = 20/4
= 5 km/h
B) After what time since the stop did he arrive at point E?
Since the stop at D, he arrived at E after (10 - 6) = 4 h
C) Write the formulas for function d(t) for sections BC, CD, and DE
For BC, d = 40 when t = 0 and d = 20 when t = 4
So d(t) = 40 - 5t
For CD, d = 20 when t = 4 and t = 6
So d(t) = 20
For DE, d = 20 when t = 6 and d = 0 when t = 10
So d(t) = 5 * (10 - t) or d(t) = 50 - 5t