Answer:

Step-by-step explanation:
Given that:
![\int \int _R 4xye^{x^2 \ y} \ dA, R = [0,1]\times [0,7]](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%204xye%5E%7Bx%5E2%20%5C%20y%7D%20%5C%20dA%2C%20R%20%3D%20%5B0%2C1%5D%5Ctimes%20%5B0%2C7%5D)
The rectangle R = [0,1] × [0,7]
R = { (x,y): x ∈ [0,1] and y ∈ [0,7] }
R = { (x,y): 0 ≤ x ≤ 1 and 0 ≤ x ≤ 7 }




![\int \int _R \ 4xy e^{x^2 \ y} \ dA = \dfrac{4}{2}[e^y -1]^7_0 \ dy](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%20%5C%204xy%20e%5E%7Bx%5E2%20%5C%20y%7D%20%20%5C%20dA%20%3D%20%20%5Cdfrac%7B4%7D%7B2%7D%5Be%5Ey%20-1%5D%5E7_0%20%5C%20dy)
![\int \int _R \ 4xy e^{x^2 \ y} \ dA = 2 [(e^7 -7)-(e^0 -0)]](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%20%5C%204xy%20e%5E%7Bx%5E2%20%5C%20y%7D%20%20%5C%20dA%20%3D%20%202%20%5B%28e%5E7%20-7%29-%28e%5E0%20-0%29%5D)
![\int \int _R \ 4xy e^{x^2 \ y} \ dA = 2 [(e^7 -7)-1]](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%20%5C%204xy%20e%5E%7Bx%5E2%20%5C%20y%7D%20%20%5C%20dA%20%3D%20%202%20%5B%28e%5E7%20-7%29-1%5D)

The answer is d.
Hope this helps
Answer:
Not a polynomial.
Step-by-step explanation:
A polynomial would have addition or subtraction signs separating the variable terms. so while -7c^3 d is not a polynomial, -7c^3 +cd would be.
Answer:
d
Step-by-step explanation:
d