830 mL. A 2.3 mol/L solution of CaCl2 has a volume of 830 mL
I am guessing that the concentration of your solution is 2.3 mol/L.
a) Moles of CaCl2
MM of CaCl2 = 110.98 g/mol
Moles of CaCl2 = 212 g CaCl2 x (1 mol CaCl2/110.98 g CaCl2)
= 1.910 mol CaCl2
b) Volume of solution
V = 1.910 mol CaCl2 x (1 L solution/2.3 mol CaCl2) = 0.83 L solution
= 830 mL solution
It would take 8 antacid tablets to produce 120 mL of CO2 gas.
The first answer is C, condensation is a physical process and the others are chemical.
The second answer is B, it doesn't change depending on location (the answer you chose)
The third answer is A.
The fourth answer is B. Temperature is an intensive property.
No explanations for the ones you got correct.
Answer:
bond angles of 120 degrees.
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.