1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
13

A lawnmower that regularly sells for %150 was discounted by 25% off.

Mathematics
1 answer:
horsena [70]3 years ago
7 0
To take 25% off, you want to do 1-.25 which equals .75. That means that you have to pay 75% of the cost after the 25% off discount.

Multiply the cost, 150, by .75 to find the new price after the discount.
150x.75=112.5

The price is now $112.50

Hope this helps!
You might be interested in
There are 75 boys in the sixth grade. The ratio of girls to boys is 7 to 5. How many girls are there in sixth grade?
kolbaska11 [484]
There are 105 in 6th grade because there are 75 boys right? So it said the ratio of girls is 7 and the ratio of boys is 5 so I divided 75 to 5 = 15 and I multiply 7 to 15 and got 105 girls.
8 0
4 years ago
Use three fours to make 11.
mr Goodwill [35]
4 + 4 + 4 - 1 = 11? Was it supposed to be an equation? I am confused.
7 0
3 years ago
What is the value of x?
trapecia [35]
3/4 = x / 7.5
4x = 3(7.5)
4x = 22.5
  x = 5.625
8 0
3 years ago
Can someone help me with this?<br>You may answer as much as you can.​
pantera1 [17]

Answer:

17 obtuse triangle

Step-by-step explanation:

hope it helps

8 0
3 years ago
Read 2 more answers
The graph of an exponential function is given. Which of the following is the correct equation of the function?
katen-ka-za [31]

Answer:

If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Who can help me with this number 5 I need help with
    5·1 answer
  • if a man runs for an hour and a half at 8 miles an hour due south and then he continues South on a bus traveling at 55 miles an
    8·1 answer
  • Wayne gretzky holds the nhl records for the most points scored in a career. he scored 2857 points in 1487 games
    13·1 answer
  • A car moves at a constant speed of 50 miles per hour. How long does it take the car to go 200 miles?
    7·1 answer
  • Can someone answer this ASAP please
    6·1 answer
  • Which of the following describes a continuous variable?
    10·1 answer
  • Write a rule for the function please!!!
    9·1 answer
  • Rewrite the expression using the properties of exponents.
    12·1 answer
  • I’m stuck on this question :/
    15·2 answers
  • Which of the following are monomials?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!