1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VashaNatasha [74]
3 years ago
7

If a circle has a diameter of 30 meters, which expression gives its area in

Mathematics
1 answer:
sattari [20]3 years ago
3 0

Answer:

C. 15²π

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Geometry</u>

  • Diameter: d = 2r
  • Area of a Circle: A = πr²

Step-by-step explanation:

<u>Step 1: Define</u>

d = 30 m

<u>Step 2: Find Area</u>

  1. Substitute [D]:                    30 m = 2r
  2. Isolate <em>r</em>:                             15 m = r
  3. Rewrite:                              r = 15 m
  4. Substitute [AC]:                 A = π(15 m)²
  5. Rearrange:                        A = 15²π
You might be interested in
A tire has a radius of 13 inches. Which equation could be used to find the circumference of the tire
pav-90 [236]

Answer:

the tire should be 16 inches in diameter

a way that you can find diameter is if you are given the radius and you just multiply that number by 2 or ADD the same number because usually it is half of the diameter

6 0
2 years ago
The factor tree for 1,764 is shown.
Rashid [163]

Answer:

42

Step-by-step explanation:

               |--------------1764------------|

               |                                      |

              2                           |-------882-----------|

                                           |                            |

                                          2               |--------441------|

                                                           |                      |

                                                   |------9-----|        |----49---|

                                                   |               |        |             |

                                                  3              3      7            7

From the factor tree we see that

1764 = 2^2 \times 3^3 \times 7^2

Now we need to find the square root of 1764.

\sqrt{1764} = \sqrt{2^2 \times 3^2 \times 7^2} = \sqrt{(2 \times 3 \times 7)^2} = \sqrt{(42)^2} = 42

4 0
3 years ago
Read 2 more answers
A critic randomly selects a movie to review from 3 action movies , 4 comedies , and two dramas . What is the probability that th
seropon [69]

Answer:

4/9

There are a total of 9 movies to choose from. 4 of them are comedy. So the chance you will pick a comedy is 4 out of nine.

7 0
3 years ago
Write a fraction that is less than 1/3 using 1 as a numerator. Then explain why the answer you chose is less than 1/3.
sammy [17]
1/4, because in 1/3, you would only need 3 parts to get one whole, but in 1/4, you would need 4 parts to get a whole. 
3 0
3 years ago
I need help with this problem from the calculus portion on my ACT prep guide
LenaWriter [7]

Given a series, the ratio test implies finding the following limit:

\lim _{n\to\infty}\lvert\frac{a_{n+1}}{a_n}\rvert=r

If r<1 then the series converges, if r>1 the series diverges and if r=1 the test is inconclusive and we can't assure if the series converges or diverges. So let's see the terms in this limit:

\begin{gathered} a_n=\frac{2^n}{n5^{n+1}} \\ a_{n+1}=\frac{2^{n+1}}{(n+1)5^{n+2}} \end{gathered}

Then the limit is:

\lim _{n\to\infty}\lvert\frac{a_{n+1}}{a_n}\rvert=\lim _{n\to\infty}\lvert\frac{n5^{n+1}}{2^n}\cdot\frac{2^{n+1}}{\mleft(n+1\mright)5^{n+2}}\rvert=\lim _{n\to\infty}\lvert\frac{2^{n+1}}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^{n+1}}{5^{n+2}}\rvert

We can simplify the expressions inside the absolute value:

\begin{gathered} \lim _{n\to\infty}\lvert\frac{2^{n+1}}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^{n+1}}{5^{n+2}}\rvert=\lim _{n\to\infty}\lvert\frac{2^n\cdot2}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^n\cdot5}{5^n\cdot5\cdot5}\rvert \\ \lim _{n\to\infty}\lvert\frac{2^n\cdot2}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^n\cdot5}{5^n\cdot5\cdot5}\rvert=\lim _{n\to\infty}\lvert2\cdot\frac{n}{n+1}\cdot\frac{1}{5}\rvert \\ \lim _{n\to\infty}\lvert2\cdot\frac{n}{n+1}\cdot\frac{1}{5}\rvert=\lim _{n\to\infty}\lvert\frac{2}{5}\cdot\frac{n}{n+1}\rvert \end{gathered}

Since none of the terms inside the absolute value can be negative we can write this with out it:

\lim _{n\to\infty}\lvert\frac{2}{5}\cdot\frac{n}{n+1}\rvert=\lim _{n\to\infty}\frac{2}{5}\cdot\frac{n}{n+1}

Now let's re-writte n/(n+1):

\frac{n}{n+1}=\frac{n}{n\cdot(1+\frac{1}{n})}=\frac{1}{1+\frac{1}{n}}

Then the limit we have to find is:

\lim _{n\to\infty}\frac{2}{5}\cdot\frac{n}{n+1}=\lim _{n\to\infty}\frac{2}{5}\cdot\frac{1}{1+\frac{1}{n}}

Note that the limit of 1/n when n tends to infinite is 0 so we get:

\lim _{n\to\infty}\frac{2}{5}\cdot\frac{1}{1+\frac{1}{n}}=\frac{2}{5}\cdot\frac{1}{1+0}=\frac{2}{5}=0.4

So from the test ratio r=0.4 and the series converges. Then the answer is the second option.

8 0
1 year ago
Other questions:
  • Be trying for a while can’t find the corrected answer!
    13·1 answer
  • 2
    5·1 answer
  • Find the MAD:<br>58, 38, 54, 48, 26, 36​
    13·2 answers
  • Points A(7, -5), B(-1, -2), and C(-4, 6) form triangle ABC on a coordinate plane. According to its sides, triangle ABC is a(n) _
    7·1 answer
  • 3. 6076 divided by 98
    10·1 answer
  • What is 5(x+1)=68-2x-2x
    9·1 answer
  • Need help with this math lesson
    15·1 answer
  • Which numbers are solutions to the inequality below?
    6·1 answer
  • 1) solve for y.
    12·1 answer
  • Helpppppppppppppppppppppppppppp
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!