1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
2 years ago
15

Help me please show how you got the answer

Mathematics
1 answer:
Lilit [14]2 years ago
3 0

Answer:

Firstly you need to put the equation in form of. y =ax+b

Let us do it

We have

2x-2y=18

-2y=18-2x

-y=(18) /2 - (2x)/2

-y =9-x

Mutiply by - to remove it beside y

Y=-9+x

Which is y=x-9

Slope =a=1

Yintercept=b=-9

You might be interested in
HELP for math!! thanks :)
tatiyna

Answer: A

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Mario earns a weekly salary of $440.00 plus a 12% commission on any sales. This week he sold $525.00 worth of merchandise. How m
mixas84 [53]
525×0.12= 63
63 + 440= 503

8 0
3 years ago
Describe the figure attached using correct geometric names<br> perpendicular, straight, etc.
polet [3.4K]

Answer:

dont know

Step-by-step explanation:

6 0
3 years ago
Rewrite 9cos 4x in terms of cos x.
rosijanka [135]
\bf \qquad \textit{Quad identities}\\\\&#10;sin(4\theta )=&#10;\begin{cases}&#10;8sin(\theta )cos^3(\theta )-4sin(\theta )cos(\theta )\\&#10;4sin(\theta )cos(\theta )-8sin^3(\theta )cos(\theta )&#10;\end{cases}&#10;\\\\\\&#10;cos(4\theta)=8cos^4(\theta )-8cos^2(\theta )+1\\\\&#10;-------------------------------\\\\&#10;9cos(4x)\implies 9[8cos^4(x)-8cos^2(x)+1]&#10;\\\\\\&#10;72cos^4(x)-72cos^2(x)+9


---------------------------------------------------------------------------

as far as the previous one on the 2tan(3x)

\bf tan(2\theta)=\cfrac{2tan(\theta)}{1-tan^2(\theta)}\qquad tan({{ \alpha}} + {{ \beta}}) = \cfrac{tan({{ \alpha}})+ tan({{ \beta}})}{1- tan({{ \alpha}})tan({{ \beta}})}\\\\&#10;-------------------------------\\\\

\bf 2tan(3x)\implies 2tan(2x+x)\implies 2\left[  \cfrac{tan(2x)+tan(x)}{1-tan(2x)tan(x)}\right]&#10;\\\\\\&#10;2\left[  \cfrac{\frac{2tan(x)}{1-tan^2(x)}+tan(x)}{1-\frac{2tan(x)}{1-tan^2(x)}tan(x)}\right]\implies 2\left[ \cfrac{\frac{2tan(x)+tan(x)-tan^3(x)}{1-tan^2(x)}}{\frac{1-tan(x)-2tan^3(x)}{1-tan^2(x)}} \right]&#10;\\\\\\

\bf 2\left[ \cfrac{2tan(x)+tan(x)-tan^3(x)}{1-tan^2(x)}\cdot \cfrac{1-tan^2(x)}{1-tan(x)-2tan^3(x)} \right]&#10;\\\\\\&#10;2\left[ \cfrac{3tan(x)-tan^3(x)}{1-tan^2(x)-2tan^3(x)} \right]\implies \cfrac{6tan(x)-2tan^3(x)}{1-tan^2(x)-2tan^3(x)}
4 0
3 years ago
How do you solve +5=-5a+5
Bogdan [553]
You subtract the number (5) on the other side of the = sign from the number on the side of the = sign. and divide (-5a) by the number you subtracted before. So untimely- 5-5= 0 ÷ -5a = 0
6 0
3 years ago
Other questions:
  • Can anyone help me with this please.
    8·1 answer
  • Compute r6r6, l6l6, and m3m3 to estimate the distance traveled over [0, 3] if the velocity at half-second intervals is as follow
    12·1 answer
  • Solving one step equations
    13·2 answers
  • What Makes This Number Unique? 8,549,176,320
    11·1 answer
  • Write “2/3x-1/3y=2” in standard form
    6·1 answer
  • On a piece of paper, graph y+ 2<img src="https://tex.z-dn.net/?f=%5Cleq" id="TexFormula1" title="\leq" alt="\leq" align="absmidd
    6·1 answer
  • -2x-2=x-14 solve for x​
    10·2 answers
  • Look at question....
    12·1 answer
  • 3
    12·1 answer
  • Put the reasons into the correct order to justify solving the inequality: -2(x + 6) &lt; 3(x + 1) -2x 12 &lt; 3x + 3 -2x &lt; 3x
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!