Answer:
Solid, liquid, gas
Explanation:
add thermal energy to solid and it becomes liquid, add thermal energy to liquid it becomes gas
Umm what kind of question is that but i think gain lol
Moles KClO₃ = 0.239
<h3>Further explanation</h3>
Given
Reaction
2KClO₃(s) ⇒2KCl(s) + 3O₂(g)
P water = 23.8 mmHg
P tot = 758 mmHg
V = 9.07 L
T = 25 + 273 = 298 K
Required
moles of KClO₃
Solution
P tot = P O₂ + P water
P O₂ = P tot - P water
P O₂ = 758 - 23.8
P O₂ = 734.2 mmHg = 0.966 atm
moles O₂ :
n = PV/RT
n = 0.966 x 9.07 / 0.082 x 298
n = 0.358
From equation, mol ratio KClO₃ : O₂ = 2 : 3, so mol KClO₃ :
= 2/3 x mol O₂
= 2/3 x 0.358
= 0.239
Answer:
The answer is 4.28 moles
Explanation:
This is super easy okay, you won't forget this!
Basically mole ratios, we're just looking at the coefficients in front of the compounds, multiplying them, and dividing them as we see fit.
In this example, you can see how you need 2 moles of lithium bromide (LiBr) for the reaction, and 2 moles of lithium chloride (LiCl) will be produced.
Basically, the <u>molar ratio</u> is when you divide numbers and see how much of this do I have for that (if that makes sense).
So if you were to divide the 2 moles of LiBr / 2 moles of LiCl = 1. So we know that the mole ratio for LiBr to LiCl is 1:1 or 2:2, either or, it's the same thing.
SO THE BIG IDEA, if we have 4.28 moles of lithium bromide reacting, we should also have 4.28 moles of lithium chloride produced, BECAUSE the <u>mole ratio</u> is 1:1.
I hope this makes sense please tell me if it doesn't, I will try my best to explain a little more.