<span>Stoichiometry deals with the quantitative measurement of reactants and products in a chemical reaction. Let suppose you are given with following reaction;
A + 2 B </span>→ 3 C
According to this reaction 1 mole of A reacts with 2 moles of B to produce 3 moles of C. Now using the concept of mole one can easily measure the amount of reactants reacted and the amount of product formed, as...
1 Mole Exactly equals 6.022 × 10²³ particles
1 Mole of Gas (at STP) exactly occupies 22.4 L Volume
1 Mole of any compound exactly equals the molar mass in grams
Therefore, <span>Stoichiometry is very helpful in quantitative analysis.</span>
Answer:
Explanation has been given below
Explanation:
- In diaxial conformation of cis-1,3-disubstituted cyclohexane, 4 gauche-butane interactions along with syn-diaxial interaction are present. Hence it readily gets converted to diequitorial conformation where no such gauche-butane interaction is present
- In two possible conformations of trans-1,3-disubstituted cyclohexane, 2 gauche-butane interactions are present in each of them.
- Hence cis-1,3-disubstituted cyclohexane exists almost exclusively in diequitorial form. But trans-1,3-disubstituted cyclohexane has no such option.
- Trans-1,3-disubstituted cyclohexane experiences gauche butane interaction in each of the two conformations.
- Therefore cis-1,3-disubstituted cyclohexane is more stable than trans conformation
Answer:
Ethanol most easily forms hydrogen bonds.
Explanation:
The difference among the alcohols in this question is the size of carbonic chain and the position of the -OH group.
Ethanol has 2 carbons and the -OH group is terminal. The other alcohols have more carbons and the -OH group is not terminal. This means that the approximation of molecules will be facilitated for ethanol, and the interaction through hydrogen bons will be easier. However, for the other molecules, there will be steric hindrance, which will make it more difficult for the molecules to make hydrogen bonds.
The figure attached shows the alcohol structures.