"The solubility of gases decreases as temperature rises" statements about trends in solubility is accurate.
<u>Option: D</u>
<u>Explanation:</u>
A substance's solubility is the quantity of that component that is needed at a defined degree of temperature to produce a saturated solution in any set quantity of solvent. Some compounds like hydrochloric acid, ammonia, etc have solubility that reduces with rising temperature. They are both standard-pressure gases.
When heating a solvent with a gas absorbed in it, both the solvent and the solute spike in the kinetic energy.When the gaseous solute's kinetic energy rises, the molecules have a higher propensity to overcome the solvent molecules' connection and migrate to the gas phase. Thus, a gas's solubility reduces with rising temperature.
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C
The kind of thermochemical equation represented below
that is
CaO(s) + H2O (l) = Ca(OH)2 (s) +65.2 kj
is exothermic ( answer B)
This is because its heat energy has a + sign meaning that heat is released by the reaction above.
Answer: The first steps
Explanation: science