The balanced chemical equation for the Haber-Bosch process is N₂(g) + 3H₂(g) → 2NH₃(g). The Haber-Bosch process played a significant role in boosting agriculture back in the day. It paved the way for the industrial production of ammonia which is used in the manufacture of fertilizers. The process involves reacting atmospheric N₂ with H₂ using a metal catalyst under high temperature and pressure.
The awnser your looking for would be B: It's Population decreases. Because if a species is unable to adapt to a changing environment the species would either have to move away or they could die in that location.
Answer:
T₁ = 135.41 K
Explanation:
Given data:
Initial pressure = 1.12 atm
Finial temperature = 36.5 °C (36.5 +273 = 309.5 K)
Initial temperature = ?
Final pressure = 2.56 atm
Formula:
P₁/T₁ = P₂/T₂
P₁ = Initial pressure
T₁ = Initial temperature
P₂ = Final pressure
T₂ = Final temperature
Solution:
P₁/T₁ = P₂/T₂
T₁ = P₁T₂ /P₂
T₁ = 1.12 atm × 309.5 K / 2.56 atm
T₁ = 346.64 atm . K / 2.56 atm
T₁ = 135.41 K
A wave.
Scientists now recognize that light can behave as both a particle and a wave.
Answer:
cream - contains a higher proportion of oil than water
ointment - dr4g mixed in approximately equal proportions of oil and water
i don't know about the other two sorry