Answer:
I hope this helps PLEASE GIVE ME BRAINLIST
For functions, there is only many input values, but there can be only one output value, and there can be no identical x values. For this, x=3.2. If y= 2*3.2 - 1, then y=5.4.
Note: The first file attached contains the clear and complete question
Answer:
a) The times at which the graph of A(t) has horizontal tangent are t = 1 and t = 7
A(t) has a local maximum at t=7
A(t) has a local minimum at t=1
b) The times at which the graph of D(t) has horizontal tangent are t = 1.59 and t = 7.74
D(t) has a local maximum at t=1.59
D(t) has a local minimum at t=7.74
c) A(t) = (-t^3) + 8(t^2) -21t + 40
d) The water level in vat A is rising most rapidly at t = 4 hrs
e) 138 gallons
f) 18 gallons per hour
g) 98 gallons
Step-by-step explanation:
For clarity and easiness of expression, the calculations are handwritten and attached as files below.
Each step is neatly expressed and solutions to each part of the question are clearly written
The <em>directional</em> derivative of
at the given point in the direction indicated is
.
<h3>How to calculate the directional derivative of a multivariate function</h3>
The <em>directional</em> derivative is represented by the following formula:
(1)
Where:
- Gradient evaluated at the point
.
- Directional vector.
The gradient of
is calculated below:
(2)
Where
and
are the <em>partial</em> derivatives with respect to
and
, respectively.
If we know that
, then the gradient is:
![\nabla f(r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{s}{1+r^{2}\cdot s^{2}} \\\frac{r}{1+r^{2}\cdot s^{2}}\end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7Bs%7D%7B1%2Br%5E%7B2%7D%5Ccdot%20s%5E%7B2%7D%7D%20%5C%5C%5Cfrac%7Br%7D%7B1%2Br%5E%7B2%7D%5Ccdot%20s%5E%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
![\nabla f (r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{3}{1+1^{2}\cdot 3^{2}} \\\frac{1}{1+1^{2}\cdot 3^{2}} \end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%20%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B1%2B1%5E%7B2%7D%5Ccdot%203%5E%7B2%7D%7D%20%5C%5C%5Cfrac%7B1%7D%7B1%2B1%5E%7B2%7D%5Ccdot%203%5E%7B2%7D%7D%20%5Cend%7Barray%7D%5Cright%5D)
![\nabla f (r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{3}{10} \\\frac{1}{10} \end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%20%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%20%5C%5C%5Cfrac%7B1%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
If we know that
, then the directional derivative is:
![\nabla_{\vec v} f = \left[\begin{array}{cc}\frac{3}{10} \\\frac{1}{10} \end{array}\right] \cdot \left[\begin{array}{cc}5\\10\end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla_%7B%5Cvec%20v%7D%20f%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%20%5C%5C%5Cfrac%7B1%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%5C%5C10%5Cend%7Barray%7D%5Cright%5D)

The <em>directional</em> derivative of
at the given point in the direction indicated is
. 
To learn more on directional derivative, we kindly invite to check this verified question: brainly.com/question/9964491
probabiltity is
outcome/total possible outcomes
hence probability is 1/6×10= 1/60