Answer:
f(g(x)) = 2(x^2 + 2x)^2
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Step-by-step explanation:
Given;
f(x) = 2x^2
g(x) = x^2 + 2x
To derive the expression for f(g(x)), we will substitute x in f(x) with g(x).
f(g(x)) = 2(g(x))^2
f(g(x)) = 2(x^2 + 2x)^2
Expanding the equation;
f(g(x)) = 2(x^2 + 2x)(x^2 + 2x)
f(g(x)) = 2(x^4 + 2x^3 + 2x^3 + 4x^2)
f(g(x)) = 2(x^4 + 4x^3 + 4x^2)
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Hope this helps...
Answer:
94,128
Step-by-step explanation:
I believe that is the commutative property...which basically states that u can move the numbers around and it will not change the result