Given:
y = sin(kt) satisfies the ODE

Evaluate the derivatives of y.
y' = k cos(kt)
y'' = -k² sin(kt)
To satisfy the ODE requires that
-k² sin(kt) + 16 sin(kt) = 0
Either k² - 16 = 0 or sin(kt) = 0.
When k² - 16 = 0, obtan
k = 4 (for a positive value of k)
When sin(kt) = 0,
kt = nπ, for n=1,2,3, ...,
Answer: k=4
Answer:
Red: y=(x+6)^2-1
Blue: y=-(x+3)^2+1
Green: y=(x^2-1)
Orange: y=-(x-3)^2+1
Purple: y=(x-6)^2-1
Step-by-step explanation:
Use Desmos to check
Answer:
(-3)^1+0
Step-by-step explanation:
Its not yet known. We need other numbers and letters!